Innholdsfortegnelse

2 Definisjon av laster ... 3
 2.1 Generelt .. 3
 2.2 Terminologi bruklassifisering ... 3
 2.3 Klassifisering av laster .. 5
 2.4 Variable laster .. 6
 2.5 Kombinasjon av laster .. 6
3 Trafikklast .. 6
 3.1 Generelt .. 6
 3.2 Brukskasser ... 7
 3.2.1 Vertikale laster ... 7
 3.2.2 Lastfeltenes størrelse og plassering i tverretning ... 10
 3.2.3 Horisontale laster .. 10
 3.2.4 Utmattingslast ... 10
 3.2.5 Samtidig last på gang-/sykkelbane ... 10
 3.2.6 Last på midtdeler .. 11
 3.2.7 Gang-/sykkelbaner og Gang-/sykkelbruer ... 11
3.3 Aksellast/totalvekt ... 12
3.4 Spesialtransporter, Veggruppe A og B ... 12
3.5 Engangstransporter ... 12
3.6 Motorredskafer, Sv 12/65 .. 13
 3.6.1 Vertikale laster ... 13
 3.6.2 Lastfeltenes størrelse og plassering i tverretning ... 13
 3.6.3 Horisontale laster .. 14
 3.6.4 Utmattingslast ... 14
 3.6.5 Last på gang- og sykkelbane .. 14
 3.6.6 Last på midtdeler .. 14
3.7 Spesialtransporter, Sv 12/100 .. 14
 3.7.1 Vertikale laster ... 14
 3.7.2 Lastfeltenes størrelse og plassering i tverretning ... 16
 3.7.3 Horisontale laster .. 18
 3.7.4 Utmattingslast ... 19
 3.7.5 Last på gang- og sykkelbane .. 19
 3.7.6 Last på midtdeler .. 19
3.8 Spesialtransporter, Øvrige .. 19
 3.8.1 Vertikale laster ... 19
 3.8.2 Lastfeltenes størrelse og plassering i tverretning ... 19
 3.8.3 Horisontale laster .. 19
 3.8.4 Utmattingslast ... 19
 3.8.5 Last på gang- og sykkelbane .. 19
 3.8.6 Last på midtdeler .. 19
Vedlegg til NA-rundskriv 2017/10: Endringer og tilføyelser til håndbok R412 Bruklassifisering

Vedlegg 1: Materialer og beregningsmetoder ... 20
1 Innledning .. 21
2 Klassifiseringsprinsipper ... 21
3 Dimensjonerende lastvirkninger ... 21
 3.1 Laster .. 21
 3.2 Beregning av lastvirkning .. 21
 3.3 Dimensjonerende lastkombinasjoner .. 22
 3.3.1 Bruddgrensetilstanden ... 22
 3.3.2 Bruksgrensetilstanden ... 24
 3.3.3 Ulykkesgrensetilstanden .. 24
 3.3.4 Utmattingsgrensetilstanden .. 24
4 Materialfastheter .. 25
 4.1 Stålkonstruksjoner ... 25
 4.1.1 Materialfaktor - stålkonstruksjoner ... 25
 4.1.2 Dimensjonerende materialfasthet - stålkonstruksjoner 27
 4.2 Betongkonstruksjoner ... 28
 4.3 Trekonstruksjoner ... 28
 4.4 Steinvevbruer .. 28

Vedlegg 2: Referanser .. 29
2 Definisjon av laster

2.1 Generelt
Kapittel 2.1 erstattes i sin helhet med etterfølgende tekst:
En last defineres som enhver form for påvirkning som medfører spenninger eller tøyninger i konstruksjonen, for eksempel kraft eller påført deformasjon.

Trafikklastene inkluderer dynamisk tillegg og virkning av ujevn lastfordeling. For øvrig forutsettes virkningene av dynamisk last ivaretatt ved en særlig vurdering.

Retningslinjens definisjon av laster omfatter almennlig opptrådende laster, men forutsetter ikke å dekke spesialtilfeller. Det skal derfor alltid vurderes om et aktuelt tilfelle er dekket av retningslinjen.

2.2 Terminologi bruklassifisering
Kapittel 2.2 erstattes i sin helhet med etterfølgende tekst:
Terminologi som benyttes i forbindelse med bruklassifisering er definert i det etterfølgende.

<table>
<thead>
<tr>
<th>Trafikklast</th>
<th>Trafikklast på eksisterende bruer er all trafikklast som tillates på det offentlige vegnett, så som brukslaster, Sv 12/65, spesialtransporter og avgangstransporter, se figur 3.1.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motorredskap</td>
<td>Sv 12/65 er vegnettet for motorredskaper (tidligere kalt mobilkrannett). Benyttes av mobilkraner, betongpumpebiler, lifter og lignende som ikke brukes til transport av nyttelast. Største tillatte akseltrykk er 12 tonn og største tillatte totalvekt er 65 tonn.</td>
</tr>
<tr>
<td>Spesialtransport</td>
<td>Spesialtransport er kjøring av udelbart gods som gir større belastning på vegnettet enn tillatt brukslast slik at det må innhentes dispensasjon før kjøring. Omfatter transport av anleggsmaskiner, knuseverk og lignende som ikke har stor samfunnsmessig betydning.</td>
</tr>
</tbody>
</table>

Det gis generell dispensasjon uten tidsbegrensning for kjøring i vegnettet for motorredskaper. Det innebærer at det kjøres fritt sammen med ordinær trafikk.

2017-12-19
Spesialtransport, Veggrupper

Veggruppe gir et vegnett for spesialtransporter basert på tillatt brukslast. Dispensasjonssøknader behandles lokalt i regionene.

Veggruppe åpner for to varianter av spesialtransporter:

2. Spesialtransport med tidsbegrensning som krever dispensasjon i hvert enkelt tilfelle. Det vil da være restriksjoner for passering av bruer og det kjøres med følge (MF).

Ved bruklassifisering benyttes tre ulike veggrupper:

Veggruppe A

Maksimalt tillatte totalvekt for Veggruppe A uten følge når tillatt brukslast er Bk 10/50 eller Bk 10/60 er eksempelvis 65 tonn uten følge (UF) og 80 tonn med følge (MF).

Veggruppe A uten følge (UF) benyttes også av motorredskaper med 2 og 3 akslinger som for eksempel mobilkraner med aksellaster på henholdsvis 2x12 tonn og 3x12 tonn.

Veggruppe B
Alle bruer som ikke klassifiseres for Veggruppe A kan normalt klassifiseres for Veggruppe B. Unntaket er bruer som av en eller annen grunn har sårbare bæreevne og som derfor klassifiseres for Veggruppe IKKE.

Veggruppe IKKE
Brukes i spesielle tilfeller for bruer med sårbare bæreevne. Det gis ikke dispensasjon for bruer som er klassifisert med Veggruppe IKKE.
Spesialtransport, Sv 12/100
Sv 12/100 gir et vegnett for spesialtransporter med aksellast opp til 12 tonn og totalvekt opp til 100 tonn. Dispensasjonssøknader behandles lokalt i regionene. Det gis kun tidsbegrenset dispensasjon og det skal kjøres med følge så fremt bruer på omsøkt strekning ikke er klarer for fri kjøring sammen med annen trafikk.

Motorredskaper har adgang til å kjøre i vegnett som er åpnet for Sv 12/100 og på samme vilkår når det ikke er åpnet for Sv 12/65.

Spesialtransport, Øvrige
Gjelder alle spesialtransporter hvor strekning som skal kjøres ikke dekkes av vegnett for Veggruppe eller Sv 12/100. Dispensasjonssøknad behandles av Region øst som har landsdekkende funksjon og hjemmel til å gi dispensasjon. Det kjøres normalt med følge.

Engangstransport

Aksellast
Last fra alle hjul på en aksel

Boggilast
Last fra akselkombinasjoner med to aksler hvor akselavstanden er 1,20 m eller mer og mindre enn 1,80 m.

Trippelboggilast
Last fra akselkombinasjoner med tre aksler hvor innbyrdes avstand er mindre enn 1,80 m.

Trippelboggilast
Last fra akselkombinasjoner med tre aksler hvor innbyrdes avstand er mindre enn 1,80 m.

Totalvekt
Last fra helt kjøretøy eller vogntog

UF
Transport som kjører fritt sammen med annen trafikk uten følge

MF
Transport som kjører med følge for å sikre at blant annet restriksjoner for brupasserings overholdes og samtidig håndtere øvrig trafikkavvikling over bruene.

2.3 Klassifisering av laster
Følgende tekst utgår:
Det vises ellers til Lastforskriftene, /1/, pkt. 2.2.
2.4 Variable laster

Følgende tekst utgår i kapittel 2.4.1: Det vises ellers til Lastforskriftene, /1/, pkt. 2.3.1
Følgende tekst utgår i kapittel 2.4.2: Det vises ellers til Lastforskriftene, /1/, pkt. 2.3.2
Følgende tekst utgår i kapittel 2.4.4: Det vises ellers til Lastforskriftene, /1/, pkt. 2.3.4

2.5 Kombinasjon av laster

Pkt. 2.5 erstattes i sin helhet med etterfølgende tekst:
To eller flere laster som er sterkt avhengig i tid og plassering, eller som ofte opptrer med sin maksimalverdi til samme tid, regnes som en last ved kombinasjon av laster. Laster som ut fra rimelighetssynspunkt utelukker hverandre, kombineres ikke.

Trafikklast som kan virke samtidig, som for eksempel vertikal trafikklast, bremselast, sidelast og last på gangbane regnes som en last i kombinasjon med andre laster.

3 Trafikklast

3.1 Generelt

Kapittel 3.1 erstattes i sin helhet med etterfølgende tekst:
Med trafikklast forstås belastningen i vertikal og horisontal retning på kjørebane, skulder, gangbane, sykkelbane og midtdeler fra så vel fotgjengere som de lette og tunge kjøretøy som kan belaste konstruksjonen.

Figur 3.1: Oversikt, trafikklaster ved bruklassifisering

Trafikklasten plasseres på brua i den mest ugunstige stilling i lengde- og tverretning innenfor den tilgjengelige føringsavstanden. For lastfeltenes størrelse og plassering i tverretning vises det til håndbok R412 Bruklassifisering, 2003, kapittel 3.2.2.
De forskjellige trafikklastene er behandlet i følgende underkapitler:

- 3.2 Bruksklasser
- 3.3 Motorredskaper, Sv 12/65
- 3.4 Spesialtransporter, veggrupper
- 3.5 Spesialtransporter, Sv 12/100
- 3.6 Spesialtransporter, øvrig (dekk av veggrupper eller Sv 12/100).
- 3.6 Engangstransporter

Det er angitt for de enkelte lastene om det er inkludert dynamisk tillegg eller ikke.

For vegbru og andre konstruksjoner som bærer ordinær veg skal det ved brukklassifisering fastsettes følgende:

2. Tilhørende veggruppe. For bruer med to eller flere kjørefelt så settes brua i Veggruppe A. For bruer med ett kjørefelt må det foretas en kontroll om det er kapasitet for Veggruppe A.
3. Tillatt akseltrykk/totalvekt eller jevnt fordelt trafikklast på G/S-bane eller fortau.
4. Om brua kan klassifiseres for Sv 12/65
5. Om brua kan klassifiseres for Sv 12/100 og eventuelt med tilhørende restriksjoner
6. Ved detaljert klassifisering skal maksimal slitelagstykkelse fastsettes. Det kontrolleres normalt ikke for mer enn 120 mm tykkelse.

G/S-bru:

1. Tillatt akseltrykk/totalvekt og jevnt fordelt trafikklast.
2. Ved detaljert klassifisering skal maksimal slitelagstykkelse fastsettes.

3.2 Bruksklasser

Kapittel 3.2 erstattes i sin helhet med etterfølgende tekst:

Bruksklassene bygger på akselast- og totalvektstabellene som er gitt i **Vedlegg 1 til forskrift om bruk av kjøretøy /1/**. De representerer de virkelige kjøretøylastene som kan trafikkere det offentlige vegnettet fritt uten dispensasjon.

3.2.1 Vertikale laster

Kapittel 3.2.1 erstattes i sin helhet med etterfølgende tekst:

Laster fra kjøretøy og vogntog er gjort om til ekvivalentlaster hvor dynamisk tillegg er inkludert. For vogntoglast inngår også en jevnt fordelt tilleggslast på 6 kN/m (3 kN/m²). Den jevnt fordelte tilleggslasten (6 kN/m) utgjør en gjennomsnittslast for en rimelig blanding av lette og tunge, tomme og fullastede kjøretøy. Ekvivalentlastene kan derfor ikke sammenlignes direkte med lastene i **Vedlegg 1 til forskrift om bruk av kjøretøy /1/**.
Ved klassifisering av bruer benyttes følgende bruksklasser:

<table>
<thead>
<tr>
<th>Brukslast</th>
<th>Aksellast</th>
<th>Totalvekt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bk 10/60</td>
<td>100 kN</td>
<td>600 kN</td>
</tr>
<tr>
<td>Bk 10/50</td>
<td>100 kN</td>
<td>500 kN</td>
</tr>
<tr>
<td>Bk T8/40</td>
<td>80 kN</td>
<td>400 kN</td>
</tr>
<tr>
<td>Bk 8/32</td>
<td>80 kN</td>
<td>320 kN</td>
</tr>
<tr>
<td>Bk 6/28</td>
<td>60 kN</td>
<td>280 kN</td>
</tr>
</tbody>
</table>

Tabell 3.2.1 Bruksklasser ved klassifisering av bruer

Bk T8/40 er en variant av Bk 8/32. Den har samme maksimale aksellast som Bk 8/32, men trippelboggielast, kjøretøylast og vogntoglast er høyere.

Bk 10/60 er en bruksklasse som brukes i bruklassifiseringen men ikke er forskriftsfestet. Denne dekker opp tømmervogntog og modulvogntog med 60 tonn totalvekt som dekkes av forskriften.

Hver av bruksklassene består av en hjullast, aksellast, boggilast, trippelboggilast, kjøretøylast og vogntoglast. Kjøretøylast og vogntoglast er gjort om til en jevnt fordelt last pluss en aksellast. Aksellasten skal plasseres i ugunstigste stilling innenfor henholdsvis 7,0 m, 16,0 m og 18,0 m. Foran og/eller bak vogntoglasten skal det tas med en jevnt fordelt last på 6 kN/m pr. lastfelt (representerer lettere blandet trafikk), dersom denne virker ugunstig.

Vertikale laster for hver av bruksklassene er gjengitt i Figur 3.2.1. Dynamisk tillegg er inkludert i lastene. Forkortelsene brukt i figuren har følgende betydning:

- \(H \) = Hjullast
- \(A \) = Aksellast
- \(V \) = Totalvekt

I bruas lengderetning plasseres lastene slik at ugunstigste lastvirkning for det undersøkte snitt oppnås. For plassering i tverretning vises det til håndbok R412 Bruklassifisering, 2003, kapittel 3.2.2.
Bruksklasses

<table>
<thead>
<tr>
<th>Lasttype</th>
<th>Lastkonfigurasjon</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bk 10/60</td>
<td>Bk 10/50</td>
<td>Bk T8/40</td>
<td>Bk 8/32</td>
</tr>
<tr>
<td></td>
<td>Aksellast</td>
<td>kN</td>
<td>100</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Totalvekt</td>
<td>kN</td>
<td>600</td>
<td>500</td>
<td>400</td>
</tr>
<tr>
<td>Hjullast</td>
<td>H</td>
<td>80</td>
<td>56</td>
<td>56</td>
<td>42</td>
</tr>
<tr>
<td>Aksellast</td>
<td>A</td>
<td>160</td>
<td>112</td>
<td>112</td>
<td>84</td>
</tr>
<tr>
<td>Boggilast</td>
<td>a</td>
<td>65</td>
<td>40</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>A</td>
<td>160</td>
<td>112</td>
<td>112</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>1,3</td>
<td>1,3</td>
<td>1,3</td>
<td>1,3</td>
<td></td>
</tr>
<tr>
<td>Trippelboggilast</td>
<td>a</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>A</td>
<td>140</td>
<td>84</td>
<td>84</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1,3</td>
<td>1,3</td>
<td>1,3</td>
<td>1,3</td>
<td></td>
</tr>
<tr>
<td>Kjøretøylast</td>
<td>A</td>
<td>40</td>
<td>32</td>
<td>32</td>
<td>24</td>
</tr>
<tr>
<td>V</td>
<td>300</td>
<td>280</td>
<td>220</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>Vogntoglast</td>
<td>A</td>
<td>40</td>
<td>32</td>
<td>32</td>
<td>24</td>
</tr>
<tr>
<td>V</td>
<td>600</td>
<td>500</td>
<td>400</td>
<td>320</td>
<td>280</td>
</tr>
<tr>
<td>L</td>
<td>18,0</td>
<td>16,0</td>
<td>16,0</td>
<td>16,0</td>
<td>16,0</td>
</tr>
<tr>
<td>p</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

(*) For lette brudekker (ståldekker, gitterrister etc.) skal det, uansett bruksklasse, kontrolleres for en hjullast på 35 kN (inkl. dynamisk tillegg) fordelt på en 20x20 cm flate tilfeldig plassert i kjørebanel.

Figur 3.2.1 **Ekvivalente laster for bruksklasses** (inkl. dynamisk tillegg)
For det enkelte konstruksjonelement er det kun den last (aksellaster, boggilaster etc.), som gir den ugunstigste lastvirkningen, som skal velges.

3.2.2 Lastfeltenes størrelse og plassering i tverretning

3.2.3 Horisontale laster

Tillegg til tekst:
Bremselast for Bk10/60 settes lik bremselast for Bk10/50.

3.2.4 Utnatningslast

Som kapittel 3.2.4, håndbok R412 Bruklassifisering, 2003.

3.2.5 Samtidig last på gang-/sykkelbane

Kapittel 3.2.5 erstattes i sin helhet med etterfølgende tekst:
Trafikklast på gang- og sykkelbane på vegbruer samtidig med trafikklast i kjørebanen er avhengig av hvordan G/S-banen er atskilt fra kjørebanen og G/S-banens bredde.

3.2.5.1 Gang-/sykkelbane adskilt fra kjørebanen med rekkverk

Kapittel 3.2.5.1 erstattes i sin helhet med etterfølgende tekst:
Gang- og sykkelbane belastes med:

- 1 kN/m med samtidig trafikklast i kjørebanen

3.2.5.2 Gang-/sykkelbane adskilt fra kjørebanen med forhøyning eller kant.

Kapittel 3.2.5.2 erstattes i sin helhet med etterfølgende tekst:
Gangbane som er adskilt fra kjørebanen bare med en forhøyning med minimumshøyde 90 mm, men som ikke hindrer kjøretøy i å komme inn, skal belastes med:

- 1 kN/m² med samtidig trafikklast i kjørebanen når gangbanebredden \(B > 1,50 \) m. Belastet gangbanebredder = \(B - 0,7 \) m. Se Figur 3.2.3.

- Hjullast for den aktuelle bruksklassen (løpsk hjul). Hjullasten plasseres vilkårlig i tverretning med minste avstand fra anleggsflatens sentrum til rekkverk eller annen sidehindring på 0,5 m. Denne lasten betraktas som unormal trafikklast og behandles som ulykkeslast.
Vedlegg til NA-rundskriv 2017/10: Endringer og tilføyelser til håndbok R412 Bruklassifisering

Figur 3.2.3 Gang-/sykkelbane atskilt fra kjørebanen med forhøyning eller kant.

3.2.5.3 Gang- /sykkelbane i plan med kjørebane
Kapittel 3.2.5.3 erstattes i sin helhet med etterfølgende tekst:
Gang- og sykkelbane som ligger i plan med kjørebanen eller med forhøyning mindre enn 90 mm og ikke er beskyttet med rekkverk, regnes å inngå i kjørebanen.

3.2.5.4 Gang-/sykkelbane på bruer med spennvidde over 200 m.
Kapittel 3.2.5.4 utgår. (Gang-/sykkelbane på bruer med spennvidde over 200 m dekkes av NA-rundskriv 2017/10: Endringer og tilføyelser til håndbok R412 Bruklassifisering, kapittel 3.2.5.1 – 3.2.5.3)

3.2.6 Last på midtdeler
Som kapittel 3.2.6, håndbok R412 Bruklassifisering, 2003.

3.2.7 Gang-/sykkelbaner og Gang-/sykkelbruer
Kapittel 3.2.7 tilføyes som nytt underkapittel:
Gang-/sykkelbaner uten samtidig trafikklast i kjørebanen og Gang-/sykkelbruer klassifiseres for følgende brukslaster (som ikke er forskriftsfestet):

<table>
<thead>
<tr>
<th>Betegnelse</th>
<th>Jevnt fordelt last</th>
<th>Vedlikeholdsutstyr</th>
</tr>
</thead>
<tbody>
<tr>
<td>At 6/10</td>
<td>5,0 kN/m²</td>
<td>G1</td>
</tr>
<tr>
<td>At 4,5/7,5</td>
<td>4,0 kN/m²</td>
<td>G2</td>
</tr>
<tr>
<td>GS 500</td>
<td>5,0 kN/m²</td>
<td>-</td>
</tr>
<tr>
<td>GS 400</td>
<td>4,0 kN/m²</td>
<td>-</td>
</tr>
<tr>
<td>GS 300</td>
<td>3,0 kN/m²</td>
<td>-</td>
</tr>
<tr>
<td>GS 200</td>
<td>2,0 kN/m²</td>
<td>-</td>
</tr>
<tr>
<td>GS 100</td>
<td>1,0 kN/m²</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabell 3.2.7 Brukslaster, Gang-/sykkelbaner og Gang-/sykkelbruer

G2 er vist i Figur 3.2.7.1. Dynamisk tillegg er inkludert i lasten.
Figur 3.2.7.1 Lasttype G2, inkl. rystelse.

Om bruk av trafikklastene ved klassifisering:
1. Jevnt fordelt last og last fra vedlikeholdsutstyr virker ikke samtidig.
3. Bremselast for G2 er 50 kN i bruas lengderetning og 15 kN i bruas tverretning. Lastene virker i høyde med brudekke og regnes å virke i brua senterlinje og vinkelrett på denne.
4. Gang-/sykkelbaner og Gang-/sykkelbruer med føringsavstand mindre enn 2,5 m som ikke belastes med kjøretøyene G1 eller G2 skal belastes med en last 10 kN i vilkårlig horisontal retning.
5. Jevnt fordelt last settes på i hele gangbanens bredde dersom dette gir mest ugunstig lastvirkning.
6. GS 500 – GS 100 benyttes kun dersom det er stengt med fysisk hinder for brøyttettractor, personbiler o.l.

3.3 Aksellast/totalvekt
Kapittel 3.3 med underkapitler utgår.

3.4 Spesialtransporter, Veggruppe A og B

3.5 Engangstransporter
Som kapittel 3.5 i håndbok R412 Bruklassifisering, 2003.
3.6 Motorredskaper, Sv 12/65
Kapittel 3.6 med underkapittel 3.6.1 – 3.6.6 tilføyes som nytt kapittel:
For å redusere behovet for dispensasjoner er det etablert et vegnett for motorredskaper, Sv 12/65. Det kontrolleres for følgende akseltrykk/totalvekter:

<table>
<thead>
<tr>
<th>Sv12/65</th>
<th>Aksellast</th>
<th>Totalvekt</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-akslede motorredskaper</td>
<td>120 kN</td>
<td>480 kN</td>
</tr>
<tr>
<td>6-akslede motorredskaper</td>
<td>120 kN</td>
<td>650 kN</td>
</tr>
</tbody>
</table>

Tabell 3.6.1 Akseltrykk/totalvekter, motorredskaper

Ei bru må ha kapasitet for både 4- og 6-akslet motorredskap for å kunne klassifiseres for Sv 12/65.

3.6.1 Vertikale laster
Aksellaster og akselavstander som skal brukes i kontrollberegningene for motorredskaper er vist i Figur 3.6.1. Dynamisk tillegg er inkludert i lastene.

<table>
<thead>
<tr>
<th>Lasttype</th>
<th>Lastkonfigurasjon (1)</th>
<th>Aksel last (kN)</th>
<th>Total vekt (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 akslet motorredskap</td>
<td></td>
<td>A₁=170 A₂=100</td>
<td>480</td>
</tr>
<tr>
<td>6 akslet motorredskap</td>
<td></td>
<td>A₁=170 A₂=100</td>
<td>650</td>
</tr>
</tbody>
</table>

(1)Aksellastens rekkefølge er vilkårlig.

Figur 3.6.1 Ekvivalentlaster for Sv 12/65.

3.6.2 Lastfeltenes størrelse og plassering i tverretning
Motorredskaper går uten følge og regnes derfor å kunne belaste bruene samtidig med annen tungtrafikk iht. Bk 10/50 der dette er mulig ut fra brua lengde og kjørebanebredd.

Breddebehovet for motorredskaper regnes å være den samme som for bruksklassene, det vises til figurene 3.2.2 til 3.2.15 i håndbok R412 Bruklassifisering, 2003.
3.6.3 Horisontale laster
De horisontale lastene bremselast, sidelast og sentrifugallast, kan ikke opptre alene, bare samtidig med de tilhørende vertikale lastene. Sentrifugallast opptrer ikke samtidig med bremselast og sidelast.

Bremselast (B)
Virkningen av kjøretøyers bremsing og akselerasjon i ett lastfelt beregnes på grunnlag av en horisontallast $B_1 = 200 \, \text{kN}$ ved brulengde $\leq 10 \, \text{m}$ og $B_2 = 400 \, \text{kN}$ ved brulengde $\geq 40 \, \text{m}$.

For brulengder mellom 10 og 40 m bestemmes B ved rettlinjet interpolasjon. Ved to eller flere lastfelter i samme retning, er horisontallasten lik $1,4B$.

Med brulengde forstås i denne forbindelse den samlede lengden av den eller de brudelene som samtidig kan overføre bremselast til den konstruksjonsdelen som skal kontrolleres.

Bremselasten forutsettes å virke i bruas lengderetning i høyde med kjørebanen, og kan antas jevnt fordelt over hele kjørebanens bredde.

Sidelast (S)
Som kapittel 3.2.3 i håndbok R412 Bruklassifisering, 2003.

Sentrifugallast (S_C)
Som kapittel 3.2.3 i håndbok R412 Bruklassifisering, 2003.

3.6.4 Utmattingslast
Som kapittel 3.2.4, håndbok R412 Bruklassifisering, 2003.

3.6.5 Last på gang- og sykkelbane
Last på gang- og sykkelbane er som angitt i NA-rundskriv 2017/10: Endringer og tilføyelser til håndbok R412 Bruklassifisering, kapittel 3.2.5.

3.6.6 Last på midtdeler
Som kapittel 3.2.6, håndbok R412 Bruklassifisering, 2003.

3.7 Spesialtransporter, Sv 12/100
Kapittel 3.7 med underkapittel 3.7.1 – 3.7.6 tilføyes som nytt kapittel:
Vogntogene i Sv 12/100 skal alltid ha dispensasjoner og gå med følge over bruer med restriksjoner. Det må søkes om dispensasjon for hver transport. Disse vogntogene er definert som spesialtransporter og det skal benyttes lastfaktorer i henhold til dette.

3.7.1 Vertikale laster
Vertikallastene som skal brukes for kontroll av bruene er gjengitt i Figur 3.7.1. Dynamisk tillegg er inkludert i lastene.
<table>
<thead>
<tr>
<th>Lasttype</th>
<th>Lastkonfigurasjon</th>
<th>Laster i kN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hjullast</td>
<td></td>
<td>H 84</td>
</tr>
<tr>
<td>Aksellast</td>
<td></td>
<td>A 168</td>
</tr>
<tr>
<td>Boggilast</td>
<td></td>
<td>A₁ 120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A₂ 168</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a 1,3</td>
</tr>
<tr>
<td>Trippelboggilast</td>
<td></td>
<td>A₁ 90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A₂ 168</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a 1,3</td>
</tr>
<tr>
<td>Kjøretøylast</td>
<td></td>
<td>A 48</td>
</tr>
<tr>
<td>Vogntoglast</td>
<td></td>
<td>A 48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V 600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V 1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p 6</td>
</tr>
</tbody>
</table>

Figur 3.7.1 Ekvivalentlast for Sv 12/100 (inkl. dynamisk tillegg)
3.7.2 Lastfeltenes størrelse og plassering i tverretning

Utgangspunktet er at Sv 12/100 fritt skal kunne passere ei bru sammen med annen trafikk. Sv 12/100 og møtende trafikk skal da plasseres i den mest ugunstige posisjon i bruas tverretning. Det skal ikke regnes med større brukslast i motsatt kjøreretning enn Bk10/50.

Dersom ei bru ikke har kapasitet til fri passering av Sv 12/100 og annen trafikk samtidig, skilles det mellom forskjellige typer passeringer med de angitte restriksjoner som nedenfor:

Kommentar: Det bør vurderes om kjøring med restriksjoner vil være sakte kjøring og dermed uten dynamisk tillegg og heller ikke samtidig med annen trafikk.
Vedlegg til NA-rundskriv 2017/10: Endringer og tilføyelser til håndbok R412 Bruklassifisering

2 kjørefelt i kjøretøyet: Restriksjon 2H
- Sentrisk i høye kjørefelt -

2 kjørefelt i kjøretøyet: Restriksjon 2S
- Sentrisk om begge kjørefelt -

2 kjørefelt i kjøretøyet: Restriksjon 2V
- Sentrisk i venstre kjørefelt -

3 kjørefelt i kjøretøyet: Restriksjon 3V
- Sentrisk i venstre kjørefelt -

3 kjørefelt i kjøretøyet: Restriksjon 3S
- Sentrisk i midtre kjørefelt -

3 kjørefelt i kjøretøyet: Restriksjon 3H
- Sentrisk i høye kjørefelt -
Figur 3.7.2 Kjørerestriksjoner for spesialtransporter.
For lengre bruer kan det være behov for å sette en minimumsavstand til annen trafikklast foran/bak Sv 12/100. Avstanden angis som et tall med multippel av 50, dvs. 100 m, 150 m etc.

3.7.3 Horisontale laster

3.7.3.1 For fri passering med Sv 12/100
De horisontale lastene bremselast, sidelast og sentrifugallast, kan ikke opptre alene, bare samtidig med de tilhørende vertikale lastene. Sentrifugallast opptrer ikke samtidig med bremselast og sidelast.

Bremselast (B)
Virkningen av kjøretøyers bremsing og akselerasjon i ett lastfelt beregnes på grunnlag av en horisontallast $B_1 = 300$ kN ved brulengde ≤ 10 m og $B_2 = 600$ kN ved brulengde ≥ 40 m.

For brulengder mellom 10 og 40 m bestemmes B ved rettlinjet interpolasjon. Ved to eller flere lastfelter i samme retning, er horisontallasten lik $1,25B$.

Med brulengde forstås i denne forbindelse den samlede lengden av den eller de brudelene som samtidig kan overføre bremselast til den konstruksjonsdelen som skal kontrolleres.

Bremselasten forutsettes å virke i bruas lengderetning i høyde med kjørebanen, og kan antas jevnt fordelt over hele kjørebanens bredde.

Sidelast (S)
Som kapittel 3.2.3 i håndbok R412 Bruklassifisering, 2003.

Sentrifugallast (S_C)
Som kapittel 3.2.3 i håndbok R412 Bruklassifisering, 2003.
3.7.3.1 For passering med restriksjoner
Det skal ikke kontrolleres for ytterligere bremselast eller sidelast enn det som er tatt hensyn til ved normal klassifisering.

3.7.4 Utmattingslast
Det fortas ikke kontroll for utmatting for Sv 12/100.

3.7.5 Last på gang- og sykkelbane
Det forutsettes ikke å være last på gang- og sykkelbane samtidig med Sv 12/100.

3.7.6 Last på midtdeler
Det forutsettes ikke å være last på midtdeler samtidig med Sv 12/100.

Spesialtransporter, Øvrige

Kapittel 3.8 med underkapittel 3.8.1 – 3.8.6 tilføyes som nytt kapittel:
For spesialtransporter med aksellaster/totalvekter som er større en det som tillates i henhold til veggrupper og Sv 12/100, skal det alltid foretas en kontrollberegning av bruene for de lastene som den aktuelle transporten representerer. Dette gjelder uansett antall kjørefelt.

Disse spesialtransportene skal alltid ha følge og kontroll med hensyn til sentrisk passering, hastighet eller annen pålagt passeringsmåte.

3.7.7 Vertikale laster
Grunnlaget for vertikale laster for disse spesialtransportene er dispensasjonsskjemaet med angivelse av aksellaster/totalvekter og akselavstander.

3.7.8 Lastfeltenes størrelse og plassering i tverretning

3.7.9 Horisontale laster
Det regnes ikke med horisontale trafikklast på brua.

3.7.10 Utmattingslast
Det foretas ikke kontroll for utmatting for disse spesialtransportene.

3.7.11 Last på gang- og sykkelbane
Det forutsettes ikke å være last på gang- og sykkelbane samtidig med disse spesialtransportene.

3.7.12 Last på midtdeler
Det forutsettes ikke å være last på midtdeler samtidig med disse spesialtransportene.
Vedlegg 1: Materialer og beregningsmetoder
1 Innledning

Følgende tekst tilføyes:

Lastfaktor trafikklast

Lastfaktorene for de ulike trafikklastene er satt slik at materialenes utnyttelse ikke skal overskride en gitt grenseverdi for egenlast og trafikklast når det er tatt hensyn til usikkerheter for trafikklastene. Disse usikkerhetene (dvs. mulige overlaster) er vurdert høyest for brukslaster og lavest for engangstransporter.

Med bakgrunn i dette er det valgt å benytte lastfaktor \(\gamma_f = 1,3 \) for bruksklasselast i to lastfelt.

For kontroll av ettpors bruer for bruksklasselast og flerspors bruer for bruksklasselast i ett spor er lastfaktoren satt til \(\gamma_f = 1,4 \).

2 Klassifiseringsprinsipper

3 Dimensjonerende lastvirkninger

3.1 Laster

Kapittel 3.1 erstattes i sin helhet med etterfølgende tekst:

For definisjon og klassifisering av lender i forbindelse med bruklassifisering vises det til kapittel 2.3 og 2.4 med underkapitler i håndbok R412 Bruklassifisering, 2003.

3.2 Beregning av lastvirkning

Kapittel 3.2 erstattes i sin helhet med etterfølgende tekst:

Lastvirkninger beregnes på grunnlag av konstruksjonens systemlinjer eller systemflater. Der det er usikkerhet om konstruksjonens tegninger stemmer med virkeligheten skal det foretas oppmåling før beregningene utføres.

Lastvirkningene skal bestemmes ved bruk av anerkjente metoder som tar hensyn til lastenes variasjon i tid og rom, konstruksjonens respons, de aktuelle natur- og grunnforhold samt den grensetilstanden som skal kontrolleres. Forenklede metoder kan benyttes hvis det er tilstrekkelig dokumentert at de gir resultater til den sikre siden.

Lastfaktorene gitt i denne veiledningen inneholder ikke dynamiske tillegg. Virkningene av dynamisk last er inkludert i evkivalentlastene.

Det skal tas hensyn til virkningen av konstruksjonens forskyvninger ved beregning av krefter og momenter i konstruksjoner og konstruksjonsdeler.

Konstruksjoners knekkklengde skal bestemmes i samsvar med innspenningsforholdene.
3.3 Dimensjonerende lastkombinasjoner

3.3.1 Bruddgrensetilstanden

Kapittel 3.3.1 erstattes i sin helhet med etterfølgende tekst:

Ved bruklassifisering skal det som et minimum foretas en kontroll i bruddgrensetilstanden.

Det skal kontrolleres for to sett lastkombinasjoner, med lastfaktorer som angitt i Tabell 3.3.1. Den ugunstigste av kombinasjonene a og b legges til grunn for dimensjoneringskontrollen. Engangstransporter kontrolleres kun for lastkombinasjon a

<table>
<thead>
<tr>
<th>Lastgruppe</th>
<th>Kombinasjon</th>
<th>Permanente laster, P</th>
<th>Deformasjons- laster, D</th>
<th>Variable laster</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Jordtrykk, J</td>
<td>Andre</td>
<td>Q</td>
</tr>
<tr>
<td>a</td>
<td></td>
<td>1,0</td>
<td>1,15 (1)(2)</td>
<td>γD</td>
</tr>
<tr>
<td>b</td>
<td></td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
</tr>
</tbody>
</table>

(1) Ved kontroll for engangstransporter settes lastfaktor for andre permanente laster til 1,1.
(2) Lastfaktor for permanente laster settes lik 1,0, dersom dette er mer ugunstig.

Tabell 3.3.1 Lastfaktorer for bruddgrensetilstanden

hvor:

\[γD = 1,1/0,9 \] for direkte virkninger av spennkrefter, forøvrig er \[γD = 1,0. \]

\[γ1 = 1,3 \] for brukslaster i to lastfelt, se Figur 3.3.1
\[γ1 = 1,4 \] for brukslaster i ett lastfelt, se Figur 3.3.1
\[γ1 = 1,2 \] for spesialtransporter (faktoren benyttes også for brukslaster der Bk10/50 er tyngste brukslast som skal kombineres med spesialtransportene)
\[γ1 = 1,15 \] for motorredskaper (faktoren benyttes også for brukslaster der Bk10/50 er tyngste brukslast som skal kombineres med motorredskaper)
\[γ1 = 1,1 \] for engangstransporter
\[γ1 = 1,0 \] for temperaturlast, variabel del av vantrykk og støt- og fortøyningslast fra ferje
\[γ1 = 1,6 \] for øvrige variable laster.

\[γ2 = 1,2 \] for brukslaster
\[γ2 = 1,1 \] for spesialtransporter (faktoren benyttes også for brukslaster der Bk10/50 er tyngste brukslast som skal kombineres med spesialtransportene)
\[γ2 = 1,05 \] for motorredskaper (faktoren benyttes også for brukslaster der Bk10/50 er tyngste brukslast som skal kombineres med motorredskaper)
\[γ2 = 0,8 \] for temperaturlast, variabel del av vantrykk og støt- og fortøyningslast fra ferjer
\[γ2 = 1,3 \] for øvrige variable laster.
Forkortelsene i tabellen har følgende betydning:

- \(Q_1 \) = Karakteristisk verdi for den variable last som er mest ugunstig for den lastvirkning som betrakter.
- \(Q_n \) = Karakteristisk verdi for øvrige variable laster som er ugunstige for lastvirkningen.

Plassering, trafikklast

<table>
<thead>
<tr>
<th>Plassering, trafikklast</th>
<th>Lastfaktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>F (\geq 5,6 \text{ m})</td>
<td>F (\geq 5,6 \text{ m})</td>
</tr>
<tr>
<td>2 spor med brukslaster + eventuelt lett lastspor + eventuelt gangbanelast</td>
<td>(\gamma_1 = 1,3)</td>
</tr>
<tr>
<td>F (\geq 5,6 \text{ m})</td>
<td>F (\geq 5,6 \text{ m})</td>
</tr>
<tr>
<td>1 spor med brukslast</td>
<td>(\gamma_1 = 1,4)</td>
</tr>
<tr>
<td>F (\geq 4,8 \text{ m}, \text{ men } < 5,6 \text{ m})</td>
<td>F (\geq 4,8 \text{ m}, \text{ men } < 5,6 \text{ m})</td>
</tr>
<tr>
<td>1 spor med brukslast + lett lastspor + eventuelt gangbanelast</td>
<td>(\gamma_1 = 1,3)</td>
</tr>
<tr>
<td>F (\geq 4,8 \text{ m}, \text{ men } < 5,6 \text{ m})</td>
<td>F (\geq 4,8 \text{ m}, \text{ men } < 5,6 \text{ m})</td>
</tr>
<tr>
<td>1 spor med brukslast</td>
<td>(\gamma_1 = 1,4)</td>
</tr>
</tbody>
</table>
Figur 3.3.1 Lastfaktorer for forskjellige lastkonfigurasjoner

3.3.2 Bruksgrensetilstanden

Som Vedlegg 1 kapittel 3.3.2, håndbok R412 Bruklassifisering, 2003.

3.3.3 Ulykkesgrensetilstanden

Som Vedlegg 1 kapittel 3.3.3, håndbok R412 Bruklassifisering, 2003.

3.3.4 Utmattingsgrensetilstanden

Kapittel 3.3.4 erstattes i sin helhet med etterfølgende tekst:
I de spesielle tilfellene hvor det er aktuelt å utføre kontroll av utmatting i forbindelse med bruklassifisering, utføres dette i samsvar med gjeldende norske standarder og håndbøker.
4 Materialfastheter

4.1 Stålkonstruksjoner

Kapittel 4.1 erstattes i sin helhet med etterfølgende tekst:
Det skal benyttes elastisk spenningsfordeling, men flytning regnes ikke å inntreffe før et visst område har kommet til flytegrensen. For tverrsnittsklasse 1 og 2 kan det for stålbjelker regnes med en gjennomsnittsspenning, \(f_y / \gamma_m \), i ytre flenshalvdel. Se Figur 4.2.1.

![Diagram av spenningsforløp i stålbjelke med flytetøyning i flensmidte.](image)

Figur 4.2.1 Spenningsforløp i stålbjelke med flytetøyning i flensmidte.

Bjelkens momentkapasitet

\[
M_d = f_d (W_e h - \frac{1}{12} bt^2 (3h-t))/(h-t)
\]

hvor \(W_e = \) Elastisk motstandsmoment
\(b = \) Flensbredde

4.1.1 Materialfaktor - stålkonstruksjoner

Kapittel 4.1.1 erstattes i sin helhet med etterfølgende tekst:
Bruddgrensetilstanden
Både brukslaster, motorredskaper, spesialtransporter, og engangstransporter skal kontrolleres i bruddgrensetilstand. Materialfaktoren, \(\gamma_m \), for stålkonstruksjoner er gitt i Tabell 4.2.1.
Vedlegg til NA-rundskriv 2017/10: Endringer og tilføyelser til håndbok R412 Bruklassifisering

Tabell 4.2.1 Materialfaktorer, \(\gamma_M \), for stålkonstruksjoner i bruddgrensetilstand

Friksjonsforbindelser

Friksjonsforbindelser kontrolleres med hensyn på avskjæring og hullkanttrykk i bruddgrensetilstand og friksjon i bruksgrensetilstand.

Hvis friksjonsflatene som et minimum er blåserenset og fri for rust og valsehud, kan det regnes med friksjonskoeffisient lik 0,5 ved kapasitetsberegnning i bruddgrense. For friksjonsflater som er forbehandlet med vask og avfetting, blåserenset til Sa3 og påført 30-50 µ sink varmsprøyting (metallisering), kan det regnes med friksjonskoeffisient lik 0,5 for største last. For last som virker i motsatt retning regnes det med friksjonskoeffisient lik 0,4.

Andre grensetilstander

For brukslaster kan det være aktuelt med kontroller i andre grensetilstander enn bruddgrensetilstanden, det vises til kapittel 3.3. For eventuelle kontroller i bruksgrense-, ulykkes- og utmattingsgrensetilstandene settes \(\gamma_M = 1,0 \), med unntak av friksjonsforbindelser i bruksgrensetilstand, der faktoren \(\gamma_M \) settes lik 1,10.

Sv 12/65, spesialtransporter og engangstransporter kontrolleres ikke i andre grensetilstander.
4.1.2 Dimensjonerende materialfasthet - stålkonstruksjoner

Kapittel 4.1.2 erstattes i sin helhet med etterfølgende tekst:

Dimensjonerende materialfasthet beregnes fra uttrykket: \[f_d = \frac{f_y}{\gamma_M} \]

Flytegrenser \((f_y) \) og dimensjonerende materialfastheter \((f_d) \) varierer med stålkvaliteten som er benyttet og alderen på brua, det vises til Tabell 4.2.2. Det gjøres oppmerksom på at det er benyttet gamle betegnelser for stålkvalitet da dette er det man normalt vil finne for eldre bruer.

<table>
<thead>
<tr>
<th>Alder</th>
<th>Stål- kvalitet</th>
<th>Strekkfasthet (f_u) (N/mm(^2))</th>
<th>Flytegrense (f_y) (N/mm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Før 1920</td>
<td>Alt konstruksjonsstål</td>
<td>350</td>
<td>220</td>
</tr>
<tr>
<td>Etter 1920</td>
<td>St. 37</td>
<td>370</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td>St. 42</td>
<td>420</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>St. 44</td>
<td>440</td>
<td>265</td>
</tr>
<tr>
<td></td>
<td>St. 52</td>
<td>520</td>
<td>345</td>
</tr>
</tbody>
</table>

Tabell 4.2.2 Strekkfasthet og flytegrenser for konstruksjonsstål

Dersom stålkvalitet ikke er kjent for bruer bygget senere enn 1920, antas St. 37. Unntaket er bruer bygget i henhold til lastklasse 1958, der stålkvalitet St. 42 og St. 52 kan velges ut fra diagrammene i Håndbok 239 Bruklassifisering når spennvidde, antall bjelker og bjelkedimensjoner er kjent.

Trykkспенninger skal reduseres i overensstemmelse med slankhet.

For bruer som har materialsertifikat kan laveste påviste flytegrense benyttes.

Hengebruer

I bruddgrensetilstanden settes hengebrukablenes kapasitet til:

\[S_d = 0,667 \times S_u / \gamma_M \]

hvor \(S_u = \) kablenes bruddlast (bruddkapasitet)
\(\gamma_M = \) materialfaktor (se Tabell 4.2.1)

4.2 **Betongkonstruksjoner**

4.3 **Trekonstruksjoner**

4.4 **Steinhvelvbruer**
Vedlegg 2: Referanser

/1/ Statens vegvesen. Vegliste riksveger. Vedlegg 1 til Forskrift om bruk av kjøretøy.
