The development of a floating bridge – Bjørnafjorden

Bernardo Costa

Teknologidagene 2018
1st November, Trondheim
Presentation contents

Bjørnafjorden project’s:

- Brief history
- Current phase & ongoing research
- Upcoming phase
E39 Coastal Highway Route

Bjørnafjorden
Bjørnafjorden

Phase: 1 – 2 – 3 – 4 – 5 – ...

Alternative pathways
Bjørnafjorden
Phase: 1 – 2 – 3 – 4 – 5 – ...

Concept study
Bjørnafjorden
Phase: 1 – 2 – 3 – 4 – 5 – ...
Concept study – floating bridge
Bjørnafjorden

Phase: 1 – 2 – 3 – 4 – 5 – …

Concept study – floating bridge
Bjørnafjorden
Phase: 1 – 2 – 3 – 4 – 5 – ...
Concept study – floating bridge
Bjørnafjorden

Phase: 1 - 2 - 3 - 4 - 5 - ...

Concept study – floating suspension bridge
Bjørnafjorden
Phase: 1 - 2 - 3 - 4 - 5 - ...
Bjørnafjorden

Phase: 1 – 2 – 3 – 4 – 5 – ...

Concept study – floating suspension bridge

... | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 ...
Concept study – submerged floating tube bridge
Bjørnafjorden

Phase: 1 – 2 – 3 – 4 – 5 – ...

Concept study – submerged floating tube bridge
Bjørnafjorden

Phase: 1 - 2 - 3 - 4 - 5 - ...

Concept study – submerged floating tube bridge
Bjørnafjorden

Phase: 1 – 2 – 3 – 4 – 5 – ...

Concept study – suspension bridge
Bjørnafjorden
Phase: 1 – 2 – 3 – 4 – 5 – ...
Concept study – suspension bridge
Bjørnafjorden
Phase: 1 – 2 – 3 – 4 – 5 – ...
Concept study – suspension bridge
Bjørnafjorden

Phase: 1 – 2 – 3 – 4 – 5 – ...

Concept study – a few others…
Bjørnafjorden

Phase: 1 – 2 – 3 – 4 – 5 – ...

Concept choice

Phase: 1 2 3 4 5

Floating bridge

Floating suspension bridge

Submerged floating tube bridge

Suspension bridge
Bjørnafjorden
Phase: 1 – 2 – 3 – 4 – 5 – ...

Floating bridge – curved
Bjørnafjorden
Phase: 1 – 2 – 3 – 4 – 5 – ...
Floating bridge – straight
Bjørnafjorden
Phase: 1 – 2 – 3 – 4 – 5 – ...
Floating suspension bridge
Bjørnafjorden

Phase: 1 – 2 – 3 – 4 – 5 – …

Submerged floating tube bridge
Bjørnafjorden
Phase: 1 – 2 – 3 – 4 – 5 – ...
Submerged floating tube bridge
Bjørna fjorden
Phase: 1 – 2 – 3 – 4 – 5 – ...
Submerged floating tube bridge
Concept choice

Bjørnafjorden
Phase: 1 – 2 – 3 – 4 – 5 – ...

Floating bridge
Floating suspension bridge
Submerged floating tube bridge
Suspension bridge
Bjørnafjorden

Phase: 1 - 2 - 3 - 4 - 5 - ...

Floating bridge – curved
Bjørnafjorden
Phase: 1 – 2 – 3 – 4 – 5 – ...
Floating bridge – curved
Bjørnafjorden

Phase: 1 – 2 – 3 – 4 – 5 – ...

Floating bridge – straight
Bjørnafjorden

Phase: 1 – 2 – 3 – 4 – 5 – ...

Floating bridge – straight
Bjørnafjorden
Phase: 1 – 2 – 3 – 4 – 5 – …
Floating suspension bridge
Concept choice

Phase: 1 – 2 – 3 – 4 – 5 – ...

Floating bridge

Floating suspension bridge

Submerged floating tube bridge

Suspension bridge

Bjørnafjorden

Phase: 1 – 2 – 3 – 4 – 5 – ...

Bjørnafjorden
Phase: 1 – 2 – 3 – 4 – 5 – …
Further developing the design basis.
A few examples:

- Wind, waves, currents and temperature measurements.
Bjørnafjorden

Phase: 1 – 2 – 3 – 4 – 5 – ...

Further developing the design basis.
A few examples:

- Vehicle–bridge motions: comfort and safety.

\[y(t) = \sin \left(\frac{v(t)}{\lambda} t \right) \cdot 2\pi \cdot \sum_n \sin(\omega_n t + \psi_n) \]
Bjørnafjorden

Phase: 1 – 2 – 3 – 4 – 5 – ...

Further developing the design basis. A few examples:

- Fatigue load model: traffic measurements.

Real traffic? Measurements Load models
Bjørnafjorden
Phase: 1 – 2 – 3 – 4 – 5 – ...
Further developing the design basis. A few examples:

- Ship impact: risk and consequence.
Bjørnafjorden
Phase: 1 – 2 – 3 – 4 – 5 – …
Further developing the design basis. A few examples:

- Bedrock and bathymetry investigations.
Bjørnafjorden
Phase: 1 – 2 – 3 – 4 – 5 – ...
Further developing the design basis.
A few examples:

- Wave model tests
Bjørnafjorden

Phase: 1 – 2 – 3 – 4 – 5 – ...

Further developing the design basis.
A few examples:

- Wind model tests: skew winds, static coefficients.
Bjørnafjorden
Phase: 1 – 2 – 3 – 4 – 5 – ...
Further developing the design basis.
A few examples:

- Wind and wave-induced-turbulence
Bjørnafjorden
Phase: 1 - 2 - 3 - 4 - 5 - ...

Further developing the design basis. A few examples:

- Dynamic buckling on a curved floating bridge

... | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 ...

wind
waves
currents
Bridge

Phase: 1 – 2 – 3 – 4 – 5 – ...

Dynamic buckling

Eurocode 3 – Static buckling curves

\[N_{cr} \approx 0.1 \times N_{pl,Rd} \]
Bjørnafjorden

Dynamic buckling

Direct resonance VS Parametric resonance

\[f_{\text{load}} = f_{\text{natural}} \]

Response:
Bjørnfjorden
Dynamic buckling
Direct resonance VS Parametric resonance

\[f_{\text{load}} = 2 \times f_{\text{natural}} \]

Response:
increasing exponentially
Bjørnafjorden
Dynamic buckling

Generalized equation of motion

\[\ddot{M} \ddot{y} + \ddot{C} \dot{y} + \left(\ddot{K} - \ddot{K}_G N(t) \right) y = \ddot{F}(t) \]

Axial force: \(N(t) = A \cos(2\omega_n t) \)

Generalized geometric stiffness: \(\ddot{K}_G = \int_0^L \left(\phi'(x) \right)^2 N(x) \, dx \)

Critical axial force amplitude: \(A_{cr,\text{harmonic}} = 4\xi \frac{\ddot{K}}{\ddot{K}_G} \)

Instability regions

Dynamic buckling, as a parametric excitation, depends on:

- Stiffness & geometric stiffness
- Axial force amplitude, frequency and duration
- Damping

Bjørnafjorden
Dynamic buckling
Harmonic loads & response.

1st mode

2nd mode

Axial force modelled as: $\Delta T(t) + \text{modal kinematic constraints}$

Dynamic buckling

$f_{load} = 2 \ f_{natural}$

... | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 ...

01.11.2018
Bjørnafjorden

Dynamic buckling
Harmonic loads & response. 1st mode

Axial force amplitude A:

$A \approx 1\text{MN}$

$A \approx 2\text{MN}$

$A \approx 3\text{MN}$

$A \approx 4\text{MN}$

$A_{cr} \approx 2.4\text{ MN}$

$N_{cr,static} \approx 70\text{ MN}$ (compression)
Harmonic loads & response.

<table>
<thead>
<tr>
<th>MODE</th>
<th>f_n [Hz]</th>
<th>T [s]</th>
<th>$A_{cr, harmonic}$ [MN] (1% damping)</th>
<th>Damping</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0091</td>
<td>109.9</td>
<td>2.4</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>0.0169</td>
<td>59.2</td>
<td>3.9</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>0.0306</td>
<td>32.7</td>
<td>6.1</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>0.0444</td>
<td>22.5</td>
<td>9.5</td>
<td>...</td>
</tr>
<tr>
<td>5</td>
<td>0.0644</td>
<td>15.5</td>
<td>12</td>
<td>...</td>
</tr>
<tr>
<td>6</td>
<td>0.0821</td>
<td>12.2</td>
<td>16</td>
<td>...</td>
</tr>
<tr>
<td>7</td>
<td>0.1033</td>
<td>9.7</td>
<td>60</td>
<td>...</td>
</tr>
<tr>
<td>8</td>
<td>0.1105</td>
<td>9.0</td>
<td>27</td>
<td>...</td>
</tr>
<tr>
<td>9</td>
<td>0.1399</td>
<td>7.1</td>
<td>50</td>
<td>...</td>
</tr>
<tr>
<td>10</td>
<td>0.1689</td>
<td>5.9</td>
<td>90</td>
<td>...</td>
</tr>
<tr>
<td>11</td>
<td>0.2035</td>
<td>4.9</td>
<td>160</td>
<td>...</td>
</tr>
<tr>
<td>12</td>
<td>0.2393</td>
<td>4.2</td>
<td>280</td>
<td>...</td>
</tr>
</tbody>
</table>
Stochastic loads & response. Stability criteria.

Dynamic buckling

Standard deviation of the axial force, for mode m

$$\sigma_{N,m} < \gamma A_{cr,harmonic,m}$$

$$\gamma = 0.5$$ [1]

Bjørnafjorden
Dynamic buckling
Stochastic loads & response. Worst cases of 100,000 simulations.

\[\gamma = 0.4 \]

\[\gamma = 0.6 \]

\[\gamma = 1.0 \]
Bjørnafjorden
Dynamic buckling
Stochastic loads & response. All 100,000 simulations.

Gumbel plots

\[\gamma = 0.4 \]
\[\gamma = 0.6 \]
\[\gamma = 1.0 \]
Bjørnafjorden
Dynamic buckling
Applying the criteria. Modal frequency ratios.

<table>
<thead>
<tr>
<th>MODE</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.85</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.35</td>
<td>1.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4.86</td>
<td>2.62</td>
<td>1.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7.04</td>
<td>3.81</td>
<td>2.10</td>
<td>1.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8.98</td>
<td>4.85</td>
<td>2.68</td>
<td>1.85</td>
<td>1.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>11.30</td>
<td>6.11</td>
<td>3.37</td>
<td>2.33</td>
<td>1.60</td>
<td>1.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>12.09</td>
<td>6.53</td>
<td>3.61</td>
<td>2.49</td>
<td>1.72</td>
<td>1.35</td>
<td>1.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>15.31</td>
<td>8.27</td>
<td>4.57</td>
<td>3.15</td>
<td>2.17</td>
<td>1.71</td>
<td>1.36</td>
<td>1.27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>18.47</td>
<td>9.98</td>
<td>5.52</td>
<td>3.80</td>
<td>2.62</td>
<td>2.06</td>
<td>1.64</td>
<td>1.53</td>
<td>1.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>22.26</td>
<td>12.03</td>
<td>6.65</td>
<td>4.58</td>
<td>3.16</td>
<td>2.48</td>
<td>1.97</td>
<td>1.84</td>
<td>1.45</td>
<td>1.20</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>26.18</td>
<td>14.15</td>
<td>7.82</td>
<td>5.39</td>
<td>3.72</td>
<td>2.92</td>
<td>2.32</td>
<td>2.17</td>
<td>1.71</td>
<td>1.42</td>
<td>1.18</td>
</tr>
</tbody>
</table>

- Frequency ratios close to 2

Example:
- mode 9 ~ 7sec
- mode 5 ~ 15sec

...| 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 ...
Bjørnafjorden
Dynamic buckling
Applying the criteria. Modal frequency ratios.

<table>
<thead>
<tr>
<th>MODE</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>4.86</td>
<td>2.62</td>
<td>1.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>7.04</td>
<td>3.81</td>
<td>2.10</td>
<td>1.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>8.98</td>
<td>4.85</td>
<td>2.68</td>
<td>1.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>11.30</td>
<td>6.11</td>
<td>3.37</td>
<td>2.33</td>
<td>1.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>12.09</td>
<td>6.53</td>
<td>3.61</td>
<td>2.49</td>
<td>1.72</td>
<td>1.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>15.31</td>
<td>8.27</td>
<td>4.57</td>
<td>3.15</td>
<td>2.17</td>
<td>1.71</td>
<td>1.36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>18.47</td>
<td>9.98</td>
<td>5.52</td>
<td>3.80</td>
<td>2.62</td>
<td>2.06</td>
<td>1.64</td>
<td>1.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>22.26</td>
<td>12.03</td>
<td>6.65</td>
<td>4.58</td>
<td>3.16</td>
<td>2.48</td>
<td>1.97</td>
<td>1.84</td>
<td>1.45</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>26.18</td>
<td>14.15</td>
<td>7.82</td>
<td>5.39</td>
<td>3.72</td>
<td>2.92</td>
<td>2.32</td>
<td>2.17</td>
<td>1.71</td>
<td>1.42</td>
</tr>
</tbody>
</table>

- Frequency ratios close to 2
- Modes with anti-symmetric axial force distributions

Applying the criteria. Example.

Axial force response:

Band pass filtered response:

Stability criteria:

\[\sigma_{N,n} < 0.5 A_{cr,n} \]
Bjørnafjorden
Phase: 1 – 2 – 3 – 4 – 5 – ...

Choosing a floating bridge concept

Alternative 1

Alternative 2

Alternative 3

Alternative 4

...| 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 ...
Bjørnafjorden
Phase: 1 – 2 – 3 – 4 – 5 – ...

Choosing a floating bridge concept

Consultant group X
1st – Alternative a
2nd – Alternative c
3rd – Alternative b
4th – Alternative d

Consultant group Y
1st – Alternative c
2nd – Alternative a
3rd – Alternative b
4th – Alternative d
Bjørnafjorden
Phase: 1 – 2 – 3 – 4 – 5 – ...

Choosing a floating bridge concept

Consultant group X

Consultant group Y

1st – Alternative a
2nd – Alternative b
3rd – Alternative c
4th – Alternative d

Pre-engineering phase

3rd party check
Good luck, dedication and inspiration for the next phase!
Thank you for your attention.