Effekter av vegsalting på vann, 1998 - 2004
Oppfølging av 5 overvåkingspunkter
Overvåking av salt i vann, 5 overvåkingspunkter 1998 - 2004

Oppdragsgiver	Oppdragstaker	ISSN-nummer
Statens vegvesen Vegdirektoratet
Utbyggingsavdelingen
Miljøseksjonen
Jørn Arntsen
22 07 34 64
jorn. arntsen@vegvesen.no | Svein Ole Åstebøl
Jan Emil Coward
COWI AS
P.b. 6412 Etterstad
0605 OSLO
T: 21 00 92 00 |
Rapportnr
UTB 2005/0
Arkivnummer
2005/29273

Tittel
Overvåking av salt i vann, 5 overvåkingspunkter 1998 - 2004

Sammendrag
Rapporten viser utvikling i saltholdighet i 5 overvåkingspunkter. Den omhandler ikke forurensning av drikkevannsbrønner

Grunnvann
Effekten av vegsalting på grunnvannskvalitet overvåkes ved 4 målestasjoner. Resultatene viser at endring i saltforbruket fra år til år vil gi en forsinket virkning på grunnvannskvaliteten p.g.a. grunnvannets lange strømningstid. Undersøkelser viser at grunnvannet påvirkes av vegsalt i hele grunnvannsmagasinet. Ved målestasjonene hadde saltforbruken grunnvann fra 2 til 133 ganger høyere saltkonsentrasjon enn bakgrunnsverdien (upåvirket grunnvann). Saltpåvirkningen bestemmes av saltforbruket, gjennomstrømmingen i magasinet (mengde pr tidsenhet) og prøvestedets avstand fra vegen.

Overvann
Målingene viste en klar saltforvirring i overvannet. Saltkonsentrasjon (Na+Cl) i overvannet i middel pr år var opp til 20 ganger høyere enn bakgrunnkonsentrasjonen. I vintersesonen var saltkonsentrasjonen i overvannet langt høyere, opp til 80 ganger høyere enn bakgrunnkonsentrasjonen. I sommersesongen var saltkonsentrasjonen 5-11 ganger høyere enn bakgrunnkonsentrasjonen. Målingene viser en klar tendens til økende saltutslipp fra veganelegget i løpet av de 6 årene målingene har pågått. Klima, saltforbruk, grunnforhold og veganeleggets utforming og alder er faktorer som påvirker saltavrenninga fra vegen. Over tid vil det skje en oppkonsentrering av salt i grunnen som bidrar til en økning i saltavrenning til drenssystemet. Hvor mye denne faktoren betyr i forhold til variasjoner i årlig saltforbruk er det ikke grunnlag for å bedømme med foreliggende grunnlag.

Emneord
Vann, Salt, Grunnvann, Overvann, Overvåking

Forsidefoto: Bjørn Iuell
Innholdsfortegnelse

1 Forord 3
2 Sammendrag og konklusjoner 4
3 Grunnvann 5
 3.1 Innledning 5
 3.2 Undersøkelser og gjennomføring 5
 3.3 Resultater 6
4 Overvann 13
 4.1 Innledning 13
 4.2 Undersøkelser og gjennomføring 13
 4.3 Resultater overvann E18 Vestfold 14
1 Forord

Vegdirektoratets kontaktperson er Jørn Arntsen. COWI AS er ansvarlig for gjennomføringen og rapporteringen av overvåkningsprogrammet. Rapporten er skrevet av Svein Ole Åstebol og Jan Emil Coward ved COWI AS. Den praktiske driften av målestasjonene utføres av vegvesenets eget personell.

Februar 2006
Statens vegvesen Vegdirektoratet
Utbyggingsavdelingen
Miljøseksjonen

Sidsel Kålås
seksjonsleder
2 Sammendrag og konklusjoner

Grunnvann

Effekten av vegsaltning på grunnvannskvalitet overvåkes ved 4 målestasjoner. Saltforbruket og saltkonsentrasjonene har variert.

E6 Hovinmoen (Akershus)

- Saltforbruket på Hovinmoen lå omtrent på samme nivå i de tre periodene.

E39 Helleland (Rogaland)

- Saltforbruket var betydelig lavere i de to siste periodene sammeleig med den første.

Rv2 Lier (Hedmark)

- Saltforbruket ser ut til å ha vært betydelig høyere i den midterste perioden.
- Saltkonsentrasjonen gikk ned med 30 % fra første til siste periode (størst nedgang for klorid).

Rv2 Matrand (Hedmark)

- Saltforbruket ser ut til å ha vært betydelig høyere i den midterste perioden.
- Midlere saltkonsentrasjon i grunnvannet var på samme nivå i de tre periodene.

Resultatene viser at endring i saltforbruk fra år til år ikke gir noen umiddelbar endring i saltinnholdet i grunnvannet. En viktig faktor i dette er at endringer i saltforbruk generelt vil gi en forsinket virkning på grunnvannskvaliteten p.g.a. grunnvannets lave stømningshastighet. Undersøkelsene viser at vannet påvirkes av salt i hele grunnvannsmagasinet dybe. Ved målestasjonen hadde saltåpenhet grunnvann fra 2 til 133 ganger høyere saltkonsentrasjon enn bakgrunnsverdien (upåvirket grunnvann). Saltåpenheten bestemmes av saltforbruket, gjennomsnittsløken i magasinet (mengde pr tidsegen) og prøvestedets avstand fra vegen.

Overvann (E18 Vestfold)

Målingene viste en klar saltåpenhet i overvannet. Saltkonsentrasjon (Na+Cl) i overvannet i middel pr år var opptil 20 ganger høyere enn bakgrunns-konsentrasjonen. I vintersesongen var saltkonsentrasjonen i overvannet langt høyere, opptil 80 ganger høyere enn bakgrunns-konsentrasjonen. I sommersesongen var saltkonsentrasjonen 5-11 ganger høyere enn bakgrunns-konsentrasjonen. Målingene viser en klar tendens til økende saltutløp fra veganlegget i løpet av de 6 årene målingene har pågått. Klima, saltforbruk, grunnforhold og veganleggets utformning og alder er faktorer som påvirker saltavvallen fra vegen. Over tid vil det skje en oppkonsentrering av salt i grunnven som bidrar til en økning i saltavveling til drenssystemet. Hvor mye denne faktoren betyr i forhold til variasjoner i årlig saltforbruk er det ikke grunnlag for å bedømme med foreliggende grunnlag.
3 Grunnvann

3.1 Innledning

3.2 Undersøkelser og gjennomføring

Veksalting løses fullstendig i vann og i områder med selvdrenerende grunn (sand/grus) vil mesteavdelen av overvannet fra vegen infiltrere (sige ned) i grunnvann og påvirke grunnvannets kvalitet (figur 1).

Figur 1. Prinsippskisse som viser saltavtrening til grunnvann, saltspredning og brønner for vannprøvetaking.
3.3 Resultater

Tabell 1. Registrert saltforbruk pr sesong (tonn/km) ved målestasjoner for grunnvann.

<table>
<thead>
<tr>
<th>Målestasjon</th>
<th>1992-93 (t/km)</th>
<th>1993-94 (t/km)</th>
<th>1994-95 (t/km)</th>
<th>1998-99 (t/km)</th>
<th>1999-00 (t/km)</th>
<th>2000-01 (t/km)</th>
<th>2001-02 (t/km)</th>
<th>2002-03 (t/km)</th>
<th>2003-04 (t/km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hovinmoen</td>
<td>15</td>
<td>10</td>
<td>19</td>
<td>23</td>
<td>-</td>
<td>6</td>
<td>21*</td>
<td>16*</td>
<td>9*</td>
</tr>
<tr>
<td>Matrand/ Lier</td>
<td>9</td>
<td>8</td>
<td>11</td>
<td>14</td>
<td>21</td>
<td>6</td>
<td>11</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>Helleland</td>
<td>11</td>
<td>9</td>
<td>15</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>-</td>
</tr>
</tbody>
</table>

* Forbruket på Osloveien (Gamle E6) ingår ikke

<table>
<thead>
<tr>
<th>Målestasjon</th>
<th>Natrium, mg/l</th>
<th>Klorid, mg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hovinmoen:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brønn 8 (bakgrunn)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Brønn 9a (påvirket)</td>
<td>10</td>
<td>72</td>
</tr>
<tr>
<td>Matrand:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brønn 3 (bakgrunn)</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Brønn 13 (påvirket)</td>
<td>38</td>
<td>30</td>
</tr>
<tr>
<td>Brønn 14 (påvirket)</td>
<td>29</td>
<td>18</td>
</tr>
<tr>
<td>Brønn 15 (påvirket)</td>
<td>23</td>
<td>18</td>
</tr>
<tr>
<td>Gj.snitt – påvirket</td>
<td>30</td>
<td>22</td>
</tr>
<tr>
<td>Lier:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brønn 1 (påvirket)</td>
<td>47</td>
<td>-</td>
</tr>
<tr>
<td>Brønn 2 (bakgrunn)</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Helleland:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brønn 1 (bakgrunn)</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Brønn 11a (påvirket)</td>
<td>11</td>
<td>23</td>
</tr>
<tr>
<td>Brønn 11b (påvirket)</td>
<td>19</td>
<td>17</td>
</tr>
<tr>
<td>Gj.snitt – påvirket</td>
<td>15</td>
<td>20</td>
</tr>
</tbody>
</table>
3.3.1 Resultater grunnvann E6 Hovinmoen (Akershus)

Hovinmoen har en spesiell grunnvanndsituation med stor umetet sone (stor dybde til grunnvannet, ca 12 m). Overvåkningen har vist en klar økning i saltkonsentrasjonen i grunnvannet og relativt sett har økningen vært størst for natrium (tab.1, fig.2/3). Fra første til andre periode (1992-1995/1998-2001) økte gjennomsnittlig natriumkonsentrasjon med 600 % (60 mg/l) og kloridkonsentrasjonen økte med 78 % (91 mg/l). Natriumkonsentrasjonen har fortsatt å øke fra andre til tredje perioden fra 72 mg/l til 96 mg/l i gjennomsnitt. Kloridkonsentrasjonen har derimot ligget på samme gjennomsnittlige nivå de to siste periodene. Bakgrunnsverdiene har vært stabilt lave i hele måleperioden.

Det påpekes at bronn 9A på Hovinmoen ligger nær vegen og representerer det overflatenære og mest saltpåvirkede grunnvannet. Stor dybde til grunnvannet medfører en stor forsinkelse og utjevning i transporten av salt ned til grunnvannet i forhold til tidspunktet for salting og variasjonen i saltforbruket fra år til år. Endring i saltforbruket gir derfor ikke umiddelbar virkning (samme året) på saltkonsentrasjonen i grunnvannet.

Deler av natriumet bindes i løsmassene i den umetede sonen. Etter hvert som bindingskapasiteten brukes opp over tid, vil en økende andel av natriumet transporteres ned til grunnvannet. Dette er en medvirkende årsak til økende natriumkonsentrasjon over tid.

Påvirket grunnvann hadde 133 ganger høyere saltkonsentrasjon (Na+Cl) enn upåvirket grunnvann.

![Diagram](image)

3.3.2 Resultater grunnvann Rv2 Matrand (Hedmark)

På Matrand er bakgrunnsverdiene tilnærmet på samme nivå i hele måleperioden (tabell 2 og figur 4). Noe variasjon i grunnvannskvaliteten vil det være (spesielt klorid) siden bakgrunnsbrønnen ligger på dyrket mark og derfor påvirkes av jordbruksdriften. Brønnene 13, 14 og 15 er saltavprørket og står på samme sted, ca 75 m fra veien, men med vanninntaket i økende dybde i grunnvannsmagasinet henholdsvis 2 m, 8 m og 15 m under grunnvannsoverflaten.

Brønn 13 har hatt tilnærmet samme middelverdi i hele måleperioden (tab.2). Saltkonsentrasjonen har sesongmessige variasjoner uten at det fremtrar noen generell utviklingstendens over tid (fig.5). De høyeste kloridkonsentrasjonene kommer hvert år etter saltesesongen (i mai/august-målingene).

I dypereiggende grunnvann (brønn 14) var det gjennomgående lavere midlere saltkonsentrasjon i andre perioden (1998-2001) sammenlignet med de øvrige periodene. Kloridkonsentrasjonen har variert mest i siste del av måleperioden med en betydelig økning i 2003 for deretter å falle ned til tidligere nivå (fig.6). Natriumkonsentrasjonen varierer mindre enn kloridkonsentrasjonen.

I brønn 15 lå natriumkonsentrasjonen på tilnærmet samme nivå i hele måleperioden (tab.2). Kloridkonsentrasjonen hadde derimot en klar gjennomsnittlig økning i andre perioden. I siste perioden var variasjonen stor fra i underkant av 20 mg/l til i overkant av 60 mg/l (fig.7). Ser man de saltavprørkede brønnene under ett, har det vært en svak nedgang i natriumkonsentrasjonen, mens kloridkonsentrasjonen økte i den midtre perioden for deretter å falle ned på tidligere nivå. Variasjonen i middelverdier var relativt liten for de ulike periodene.

I gjennomsnitt for de 3 periodene lå saltkonsentrasjonen (Na+Cl) i påvirket grunnvann 4-7 ganger høyere enn bakgrunnsnivået. Natriumkonsentrasjonen lå 4-7 ganger høyere enn bak-
grunnsnivået i de ulike periodene. For klorid lå konsentrasjonen 3-4 ganger høyere enn bakgrunnsnivået

3.3.3 Resultater grunnvann Rv2 Lier (Hedmark)
Saltforbruket på Lier tilsvarer det samme som på Matrand (samme vestrekning). Avstanden mellom Lier og Matrand er ca 15 km.

Saltkonsentrasjonen i påvirket grunnvann lå i gjennomsnitt 9 ganger høyere enn bakgrunnsverdien (Na+Cl).

3.3.4 Resultater grunnvann E39 Helleland (Rogaland)
Målestasjonen på Helleland var ute av drift i 1 års tid i 2003/2004.

Bronn 1 er upåvirket av salting og står ca 30 m fra veien (oppslams) med vanninnntaket 0-3 m under grunnvannsoverflaten. Bakgrunnskonsentrasjonen ligger på nivå med Matrand (tab.2, fig. 9). Kloridkonsentrasjonen har variert en del og dette har sammenheng med områdets nærhet til kysten (saltnedfall via luft) og beliggenheten på dyrket mark.

Bronnene 11A og 11B er saltpitakret og står på samme sted ca 130 m fra veien, med vanninnntak henholdsvis 5 m og 12 m under grunnvannsoverflaten (fig. 10 og 11). Midlere saltkonsentrasjon i brønn 11A var dobbelt så høyt i den andre periode (1998-2001) sammenlignet med første og siste perioden. I brønn 11B (dypere grunnvann) har konsentrasjonen vært mer stabil gjennom måleperioden. Totalt sett økte saltkonsentrasjonen (Na+Cl) i påvirket grunnvann i gjennomsnitt med 10 mg/l tilsvarende 20 % økning fra første til andre periode for så å falle ned tilsvarende i tredje perioden. At saltkonsentrasjonen har økt mens saltforbruket har gått ned i andre perioden, kan bl.a. ha sammenheng med forsinkelsen i saltpitakretning i grunnvannsmagasinet (lav strømningshastighet) i forhold til tidspunktet for endring i saltforbruket.

Saltkonsentrasjonen i påvirket grunnvann lå i gjennomsnitt på det dobbelte av bakgrunnsverdien.

4 Overvann

4.1 Innledning

4.2 Undersøkelser og gjennomføring

Generelt renner saltholdig overvann av fra vegen til overvannssystemet (fig. 12). Veggalt som avsettes på sideterreng (sprut/avdrift) vil delvis transporteres ned i jorda og delvis renne av på overflaten til overvannssystemet. Saltholdig sigevann forventes å bli fanget opp av drenerringen langs vegen. Saltet som ikke fanges opp i overvanns-/drenssystemet spres diffust og vil følge den naturlige avrenningen til vassdrag.

Figur 12. Prinsippskisse som viser avrenning av saltholdig overvann fra parsell med fire felt på E18 Gutu (Vestfold).
4.3 Resultater overvann E18 Vestfold

De løpende målingene av saltkonsentrasjon i overvannet er sammenstilt i fig. 13. Gjennomsnittlig saltkonsentrasjon pr år samt årlig salttransport i overvannssystemet er sammenstilt i tab. 3.

Utviklingen i saltkonsentrasjon gjennom året er lik fra år til år. Konsentrasjoner øker betydelig på vinteren og faller ned i den saltfrie perioden. De maksimale konsentrasjonene for klorid ligger på 800 mg/l og for natrium 500 mg/l. I den saltfrie perioden ligger konsentrasjonen i området 40–90 mg/l dvs. 5-11 ganger høyere enn bakgrunnskonsentrasjonen. Bakgrunnskonsentrasjonen for natrium og klorid ligger på 8 mg/l.

Den gjennomsnittlige natriumkonsentrasjonen pr år har økt fra 30 mg/l i 1998/1999 til i overkant av 100 mg/l i løpet av måleperioden på 6 år. Tilsvarende har kloridkonsentrasjonen økt fra 43 mg/l til nærmere 180 mg/l. Salttransporten i overvannssystemet (utslippet til vassdrag) har også økt i den samme perioden. Lav transport året 2001/2002 må sees i sammenheng med at bare 8 månedes av året inngår i beregningen.

<table>
<thead>
<tr>
<th>År</th>
<th>Na, mg/l</th>
<th>Cl, mg/l</th>
<th>Salttransport, kg/år</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998/1999</td>
<td>30</td>
<td>43</td>
<td>1800</td>
</tr>
<tr>
<td>1999/2000</td>
<td>56</td>
<td>77</td>
<td>1100</td>
</tr>
<tr>
<td>2000/2001</td>
<td>37</td>
<td>51</td>
<td>3000</td>
</tr>
<tr>
<td>2001/2002*</td>
<td>76</td>
<td>132</td>
<td>1600</td>
</tr>
<tr>
<td>2002/2003**</td>
<td>114</td>
<td>179</td>
<td>4500</td>
</tr>
<tr>
<td>2003/2004</td>
<td>103</td>
<td>171</td>
<td>5700</td>
</tr>
</tbody>
</table>

* 8 mnd (okt.-jun.) ** 10 mnd. (jan.-okt.)