Durability aspects of fly ash and slag in concrete
Presentations from a Nordic workshop
<table>
<thead>
<tr>
<th>Tittel</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestandighetsaspekter ved bruk av flygeaske og slagg i betong</td>
<td>Durability aspects of fly ash and slag in concrete</td>
</tr>
<tr>
<td>Undertittel</td>
<td>Subtitle</td>
</tr>
<tr>
<td>Presentasjoner fra Nordisk workshop</td>
<td>Presentations from a Nordic workshop</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Forfatter</td>
<td>Author</td>
</tr>
<tr>
<td>Bård Pedersen (redaktør)</td>
<td>Bård Pedersen (editor)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Avdeling</td>
<td>Department</td>
</tr>
<tr>
<td>Trafikksikkerhet, miljø- og teknologiavdelingen</td>
<td>Traffic safety, environment and technology</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Seksjon</td>
<td>Section</td>
</tr>
<tr>
<td>Tunnel og betong</td>
<td>Tunnel and concrete</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Prosjektnummer</td>
<td>Project number</td>
</tr>
<tr>
<td>601762</td>
<td>601762</td>
</tr>
<tr>
<td>Rapportnummer</td>
<td>Report number</td>
</tr>
<tr>
<td>Nr. 149</td>
<td>No. 149</td>
</tr>
<tr>
<td>Prosjektleder</td>
<td>Project manager</td>
</tr>
<tr>
<td>Bård Pedersen</td>
<td>Bård Pedersen</td>
</tr>
<tr>
<td>Godkjent av</td>
<td>Approved by</td>
</tr>
<tr>
<td>Claus K. Larsen</td>
<td>Claus K. Larsen</td>
</tr>
<tr>
<td>Emneord</td>
<td>Key words</td>
</tr>
<tr>
<td>Bestandighet, betong, tilsetningsmaterialer, flygeaske, slagg</td>
<td>Concrete durability, supplementary cementing materials, fly ash, blast furnace slag</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
</tr>
<tr>
<td>Sammendrag</td>
<td>This publication contains 23 presentations given at the Nordic Workshop/ Mini Seminar “Durability aspects of fly ash and slag in concrete” held in Oslo on February 15 and 16, 2012.</td>
</tr>
</tbody>
</table>
PREFACE

The workshop

This publication contains 23 presentations given at the Nordic Workshop/ Mini Seminar “Durability aspects of fly ash and slag in concrete” held in Oslo on February 15 and 16, 2012. The papers written in connection to this workshop are published separately as Publication number 10 in a special series of Workshop-Proceedings of the Nordic Concrete Research.

The workshop was organised by Bård Pedersen and Claus K. Larsen from the Norwegian Public Roads Administration & Dirch H. Bager, DHB-Consult.

Nordic Mini Seminars are workshops arranged solely for researchers from the Nordic Countries in order to strengthen the inter-Nordic co-operation. A few foreign specialists can however be invited. To further stimulate discussions, only participants actively contributing are invited. 75 such Mini Seminars have been held since 1975.

38 researchers from Denmark, Finland, Iceland, Norway, Sweden, Canada, the Netherlands, Germany and UK participated in this workshop.

Background and motivation for our initiative

Having more than 10 000 concrete bridges, more than 1000 tunnels and many ferry quays in service, many of these along the long Norwegian coastline with very harsh climate, we have a strong interest in every aspect of concrete durability. Historically, Norwegian concrete bridges were built using Portland cement concrete. From approximately 1989 all bridges have been built with a maximum water/binder ratio of 0.40 and with addition of minimum 4 % silica fume. The major durability concern for concrete bridges built before 1989 is reinforcement corrosion due to a combination of insufficient rebar cover and insufficient chloride resistance of the concrete. In addition, many of the older structures suffer from alkali-silica reactions. However, problems associated with freeze-thaw resistance are rarely seen on Norwegian bridges.

During the latest decade, blended cements have become dominating on the Norwegian market. The most common cement type is now CEM II/A-V containing 17-20 % fly ash, while higher fly ash addition levels up to approximately 40 % have been used for special projects. Slag is less common than fly ash in Norway, but there is CEM II/B-S with 33 % slag available on the Norwegian market.

The NPRA have been performing rather extensive research and documentation programs on low-to-high volume fly ash and slag concrete during the latest decade. Some of the NPRA results with relevance for rebar corrosion were presented by Claus K. Larsen during the workshop. Fly ash addition levels up to 40 % have been used with great success for massive infrastructures in order to reduce the heat generated by hydration and thus the cracking sensitivity, as presented at this workshop by Øyvind Bjøntegaard.

Some of the positive effects of using blended cements with fly ash or slag include reduced chloride penetration rates, increased electrical resistivity, mitigating effect against alkali-silica reactions, improved sulphate resistance and reduced heat of hydration. However, there are some concerns or question marks, in particular when going to very high addition levels of fly ash or slag.
Some of the questions raised by the NPRA are shown below:

- Frost/salt (scaling) resistance. Historically, few frost problems on Norwegian highway structures. Are we creating new problems if we start using high-volume fly ash/slag applications?

- Excellent long term chloride ingress performance, but what about the early age resistance against chloride ingress? High volume fly ash concrete is slow and strongly temperature dependent.

- How do blended cements affect the critical chloride content for depassivation of steel?

- What about carbonation, is the increased carbonation rates for blended cements of significance for high performance concrete?

- We have observed very high levels of long-term electrical resistivity for FA-concretes. What are the practical consequences of this with respect to corrosion rates?

- What about self-healing of cracks? We have seen indications on lower, or at least slower self-healing of cracks.

- ASR: Norwegian regulations are based on laboratory performance testing. Does the combination of reactive aggregates, high alkali levels and low fly ash addition levels give a sufficient safety level?

Based on our general interest in blended cements with fly ash and slag, and our concerns listed above, we took the initiative to arrange the workshop. Our intention with this was to gain more updated information from the international community and to stimulate to cooperation and further research on the issues needing more attention.

What did we learn?

It is hardly possible to summarize a two-day workshop on a few pages, but in the following some important issues are highlighted.

- One important lesson learnt is that the practice for making durable concrete structures differs a lot from country to country. This is due to variations in climatic condition, variations in cement composition, variations in access to supplementary materials, different national rules and regulations and differences in concrete technology traditions. As an example of this, there is a striking difference between the Dutch practice of using CEM III/B with approximately 65-70 % slag for marine structures and the Swedish traditions using a low alkali sulphate resistance CEM I for infrastructures.

- There are obviously large differences in chemical and mineralogical composition for fly ash and slag from different sources, and it is therefore difficult to generalize. The performance of a given supplementary material in combination with a given Portland cement is generally difficult to predict based on its composition, and the real performance should always be verified.
- Slag cements generally seem to develop a dense pore structure at relatively early ages, while fly ash cement is a lot slower (with a larger temperature dependency). Early age exposure to chlorides may therefore be a critical factor for (high volume) fly ash concrete.

- Fly ash addition levels from approximately 20 % or higher or slag addition levels from approximately 50 % seem to give a fairly good ASR-mitigating effect. However the effect depends strongly on the type of reactive rock, the cement alkali level as well as the chemical composition of the fly ash or slag. More reliable tools for “performance testing” of any given mix design are being developed.

- Ternary blends including silica fume may improve the early age properties significantly compared to binary blends. There also seem to be a long term “synergistic effect” from ternary blends with respect to ASR-mitigation.

- In general, fly ash and slag cause increased carbonation rates. Even though depassivation of steel due to carbonation may not be relevant for high performance concrete with large cover depths, carbonation may negatively affect other properties such as frost/salt resistance and chloride penetration rates.

- High volumes of fly ash and slag may cause a negative effect on frost/salt resistance. Generally, it seems more difficult to attain a sufficient quality of the air pore structure in the presence of fly ash or slag. In addition, the effect of entrained air with respect to frost/salt resistance seems somewhat unclear. There seems to be a general need to calibrate laboratory performance versus real field behaviour.

- The effect on critical chloride content is still unclear, and needs more attention.

- Addition of fly ash and slag generally increases the electrical resistivity of concrete, which again reduces the corrosion rates. Further research to quantify these effects is in progress.

- Blended cements (in particular high volume fly ash cements) may give a significant reduction in heat of hydration, consequently “crack-free” structures are easier to achieve. On the other hand, blended cements may reduce the self-healing abilities, or at least slow down the self-healing processes.

We consider workshops of this kind to be an excellent meeting-place to exchange and discuss research results, to identify needs for further research and to initiate partnership for future research collaboration. In this respect, the workshop was successful and very useful for the NPRA and we trust also for the other participants.

Bergen, July 2012

Bård Pedersen
CONTENTS:

List of Participants ... vii

Peter Brennan
Fly ash – an overview of its production, properties and utilisation in Europe 1

Joost Gulikers
Experience with the use of blast furnace slag cement concrete at Rijkswaterstaat..... 13

Dirch H. Bager
““The k-value concept”, the “Equivalent performance of combinations concept”
and the “Equivalent concrete performance concept”” ... 23

Steinar Helland
ISO 16204 Durability – Service life design of concrete structures 38

Christer Ljungkrantz
Choice of binder in severe exposure classes – Swedish experiences and guidelines .. 61

Klaartje de Weerdt, Mette Geiker
Modelling the reaction of fly ash and slag in blended cements 66

Mette Geiker, Mariana Canut and Mads Monster Jensen
Impact of curing on the porosity and chloride ingress in cement pastes with and
without slag .. 79

Martin Kaasgaard, Erik Pram Nielsen, Claus Pade
Influence of curing temperature on development of compressive strength
and resistance to chloride ingress with different binder systems 86

R. Doug Hooton
The effect of SCM on Alkali-Aggregate Reaction in concrete 94

Jan Lindgård & Per Arne Dahl
The Norwegian system for performance testing of Alkali-Silica Reactivity
(ASR) - some experiences ... 125

Rob Polder
Effects of slag and fly ash on corrosion in concrete in chloride environment 133

Hannele Kuosa, Markku Leivo, Erika Holt & Miguel Ferreira
The effect of slag and fly ash on interaction of chloride penetration and carbonation .. 140

Odd Gjørv
Blast furnace slag for durable concrete infrastructure in marine environment 151
Claus K. Larsen
The effect of fly ash and slag on critical parameters for rebar corrosion
– NPRA experience ... 160

Peter Utgenannt
Frost resistance of concrete containing secondary cementitious materials
– Experience from field and laboratory investigations 171

Stefan Jacobsen, Margrethe Ollendorff, Mette Geiker, Lori Tunstall & George W. Scherer
Predicting air entrainment and frost durability in fly ash concrete 185

Miguel Ferreira, Markku Leivo, Hannele Kuosa
The effect of by-products on frost-salt durability of aged concrete 195

Anders Lindvall, Oskar Esping & Ingemar Löfgren
Performance of concrete mixed with fly ash or blast furnace slag 204

Terje F. Rønning
Concrete freeze-thaw scaling resistance testing; Experience and development of
a testing regime & acceptance criteria ... 214

Øyvind Bjøntegaard
Low-heat concrete with fly ash in massive infrastructures; experience from
Norway on hardening phase crack sensitivity .. 224

Harald Justnes
Self-healing potential in blended cements .. 236

R. Doug Hooton
Thirty five years experience with slag cement concrete in Canada 243

Per Fidjestøl
Ternary blends – experiences from laboratory and practice 278
LIST OF PARTICIPANTS:

Dirch H. Bager DHB-Consult ... Denmark
Øyvind Bjøntegaard NPRA ... Norway
Peter Brennan Power Minerals Ltd. UK
Kjersti K. Dunham NPRA ... Norway
Miguel Ferreira VTT .. Finland
Fer Fidjestøl Elkem ... Norway
Katja Fridh Lund University .. Sweden
Mette Geiker NTNU ... Norway
Odd Gjørv NTNU ... Norway
Joost Gulikers Rijkswaterstaat The Netherlands
Per Hagelia NPRA ... Norway
Lars Hansson Cemex ... Sweden
Steinar Helland Skanska ... Norway
Doug Hooton University of Toronto Canada
Stefan Jacobsen NTNU ... Norway
Thomas Jahren Cemex ... Norway
Harald Justnes SINTEF .. Norway
Reidar Kompen NPRA ... Norway
Matheus Kuchnia Steag Power Minerals Germany
Hannele Kuosa VTT ... Finland
Claus K. Larsen NPRA ... Norway
Jan Lindgård SINTEF .. Norway
Anders Lindvall Thomas Concrete Group Sweden
Christer Ljungkrantz Cementa ... Sweden
Ian Markey NPRA ... Norway
Bjørn Myhr NPRA ... Norway
Erik Pram Nielsen Danish Technological Institute Denmark
Fly Ash – An Overview of its Production, Properties and Utilisation in Europe

Peter Brennan

What is the presentation about?

- How fly ash is produced within coal-fired power stations.
- The basic properties of fly ash.
- The main markets into which fly ash can be sold.
- The current position in Europe regarding utilisation of fly ash.
- A basic overview of the use of fly ash in concrete together with examples of its use.
The Physical Nature of Fly Ash

PFA particles $<$45µm are predominantly spherical in nature:

- They are glass spheres.
- Hollow spheres are known as cenospheres – they float on water.

Coarser particles are more irregular:

- Carbon particles are like charcoal – they can vary in size and shape.
Principal Markets for Fly Ash

- Cement manufacture
- Ready-mix concrete
- Concrete products
- Autoclaved Aerated Concrete Blocks
- Engineered Fill – e.g. road embankments, bridge abutments
- Grouting – e.g. filling underground voids and mine workings

Production of Coal Combustion Products (CCPs) in Europe (EU 15) in 2008

- Production of CCPs in Europe (EU15) is approximately 60 million tonnes per annum
- Total production of CCPs in EU 27 is estimated to be more than 100 million tonnes per annum
Fly Ash production (EU15)

• Hard coal Fly Ash production in the EU 15 region is estimated with approximately 33 million tonnes per annum.

• This figure includes qualities which are not suitable for the cementitious market (e.g. fluidised bed ashes).

Fly Ash Utilisation (EU15) in 2008

Hydration of Fly Ash

Fly Ash reacts with the lime produced by the hydration of cement to give more hydration products - reducing the voids and lowering the permeability. This is the pozzolanic reaction.
The Benefits of Using of Fly Ash in Concrete

Due to its pozzolanic properties fly ash reacts with lime to form silicate hydrates - these hydrates give concrete its enhanced strength and durability.

In addition the use of fly ash in concrete has the following benefits:

- Reduced permeability
- Improved sulphate resistance
- Reduced heat of hydration
- Improved workability

The Use of Fly Ash in Concrete

Fly ash can be used in many ways in concrete.

The following are the main approaches:

As a cement - EN197 and EN14216
Factory made blends of Portland cement and fly ash

As a filler aggregate
- EN12620 Aggregates for concrete
- EN13055-1 Lightweight aggregates for concrete

As a Type II addition - EN450:2005
March 2005 – harmonized version published (currently under revision).
Mixer blended fly ash for concrete.
Fly Ash Production versus Demand

At present in Europe there is a mismatch between areas in which fly ash is produced and areas in which fly ash is required. There is also a seasonal mismatch (winter to summer) between demand and availability of fly ash in some countries.

In response to these challenges the following measures have been introduced:

- Development of international (cross border) sales of fly ash.
- Investment in ash beneficiation technology.
- Investment in silo plants and terminals.
- Exploring the use of conditioned and stockpiled ash.

Note the impact of new coal-fired power stations currently under construction.

Example 1: Quality improvement (fly ash beneficiation)

Ash beneficiation at Rugeley Power Station, UK

- Only facility of its kind.
- Reduces LOI content of fly ash by approximately 50%
- Product: fly ash complying with EN 450
- Capacity: 20,000 p.a.
- Capacity can easily be scaled up by means of replication
Example 2: Silo facilities

Silo plants:
- Ottmarsheim: 7,700 m³
- Nürnberg: 2,500 m³
- Bachmann: 16,000 m³
- Werne: 4,000 m³
- Neumarkt: 40,000 m³
- Neubeckum: 23,000 m³

Others:
- Flat store Baums: 18,000 m³
- Redrying plant: 100,000 m³

Total: > 200,000 m³

Example 3: Use of Conditioned and Stockpiled Fly Ash - Redrying Plant in Lünen, Germany

- Only facility of its kind
- Product: fly ash complying with EN 450
- Capacity: 100,000 m³
- Permit according to the waste legislation, certified recycling plant
- Material can be accepted from all over Europe

Production vs. Demand

- Production
- Demand

Jan Feb Mrz Apr Mai Jun Jul Aug Sep Okt Nov Dez

Durability aspects of fly ash and slag in concrete
Examples of the Use of EN450 Fly Ash in UK Construction Projects

EN450-1 Fly Ash has been used in many important projects in the UK, from the Thames barrier to Canary Wharf...

... from self compacting concrete to wind farms ...

Examples of the Use of EN450 Fly Ash in UK Construction Projects
Examples of the Use of EN450 Fly Ash in UK Construction Projects

.... to Heathrow Terminal 5 to sewage treatment plants...

Examples of the Use of EN450 Fly Ash in UK Construction Projects

.... to the Channel Tunnel Rail Link...
Examples of the Use of EN450 Fly Ash in UK Construction Projects

... to Pavement Quality Concrete for airport taxiways and runways.
Experiences with the use of blast furnace slag cement concrete at Rijkswaterstaat

Joost Gulikers
Rijkswaterstaat
Centre for Infrastructure
Utrecht, The Netherlands

February 15-16, 2012

OVERVIEW

• BACKGROUND
• BENEFITS OF BLAST FURNACE SLAG CEMENT CONCRETE
• SOME MARINE PROJECTS
• PERFORMANCE SPECIFICATIONS
• CONCERNS
BACKGROUND

EUROCODE:
• all cements are equal

RIJKSWATERSTAAT:
• but some cements are more equal

blast furnace slag cement

RIJKSWATERSTAAT GUIDELINE (ROK)

EUROCODE IS OK PROVIDED THAT:

READY MIX CONCRETE:
• CEM III > 50% blast furnace slag

PREFAB CONCRETE ELEMENTS:
• CEM III > 50% blast furnace slag
• CEM I + > 25% fly ash
MOTIVES

- MANAGER OF INFRASTRUCTURE
- DESIGN SERVICE LIFE: 100yr
- ZERO MAINTENANCE
- DURABILITY
- SUSTAINABILITY

BENEFITS OF CEM III/ CEM II B-V

- LOW PERMEABILITY
- ALKALI SILICATE REACTION
- HIGH SULFATE RESISTANCE
- LOW HEAT OF HYDRATION
- REDUCTION OF CO₂ EMISSION
THE NETHERLANDS – SOME PROJECTS

Belgium
North Sea
Germany
100km

Rijkswaterstaat
Nordic Workshop - Oslo
February 15-16, 2012

NOORDERSLUIS – IJMUIDEN 1921-1929

<table>
<thead>
<tr>
<th>Constituents</th>
<th>Typical Mix Design</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lock head</td>
</tr>
<tr>
<td></td>
<td>L/ter (V/V)</td>
</tr>
<tr>
<td>OPC (CEM I)</td>
<td>225</td>
</tr>
<tr>
<td>Tras (pozzolanic)</td>
<td>56</td>
</tr>
<tr>
<td>GGBFS (CEM III)</td>
<td>--</td>
</tr>
<tr>
<td>Fine sand</td>
<td>193</td>
</tr>
<tr>
<td>Coarse sand</td>
<td>387</td>
</tr>
<tr>
<td>Gravel</td>
<td>700</td>
</tr>
<tr>
<td>Water</td>
<td>??</td>
</tr>
</tbody>
</table>
NOORDERSLUIS - PRESENT CONDITION

NO SERIOUS DEGRADATION

ALKALI SILICA REACTION
EASTERN SCHELDT STORM SURGE BARRIER (2)

- Piers, upper and lower beams: 200 years
- Bridge structure: 50 years
- Marine environment

Chloride-induced reinforcement corrosion

HARINGVLIET DISCHARGE SLUICES
HARINGVLIET – CHLORIDE PROFILES

![Graph showing chloride profiles](image)

- Chloride content, C [\%/m cement]
- Distance to exposed concrete surface, x [mm]

CARBONATION & FROST-THAW

- CEM III/B: MORE SENSITIVE TO CURING
- CARBONATION: NO PROBLEM
- LAST 3 YEARS: (RELATIVELY) SEVERE WINTERS
- DAMAGE TO UPSTANDS
- CAUSE: POOR CURING
PERFORMANCE-BASED APPROACH

CONCERNS

- **EXPERIENCE IS BASED ON ‘DUTCH’ SLAG**
 GLASS CONTENT > 95%

- **PROPER EXECUTION AND CURING REQUIRED**

- **TOO MUCH FOCUS ON (MATHEMATICAL) MODELLING AND LABORATORY TEST METHODS**
AN ADDITIONAL ADVANTAGE
The k-value concept

Equivalent Performance of Combinations Concept

Equivalent Concrete Performance Concept

Dirch H. Bager
DHB-Consult
Oslo 2012-02-15

THE "K-VALUE CONCEPT"

The k-value concept is a prescriptive concept which is based on the comparison of the performance (durability or strength as a proxy-criterion for durability where appropriate)

The k-value concept permits type II additions to be taken into account by replacing the term "water/cement ratio" with "water/(cement + k * addition) ratio"
THE "K-VALUE CONCEPT"

Safe prescriptive k-value

- Basic requirement:
 \[
 k = \frac{w_b}{w_c} \times \frac{1}{w_{C_{k}}}
 \]

- Properties:
 - Reference
 - Addition with content w_c

Diagram showing the relationship between property, w_c, and k-value for different mixes.
THE "K-VALUE CONCEPT"

<table>
<thead>
<tr>
<th>Country</th>
<th>Product</th>
<th>K-value</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denmark</td>
<td>FA</td>
<td>0.5</td>
<td>CEM I, CEM II/A-L, CEM II/A-LL</td>
</tr>
<tr>
<td></td>
<td>MS</td>
<td>2.0</td>
<td>CEM I, CEM II/A-L, CEM II/A-LL, CEM II/A-V, CEM II/B-V, CEM II/B-M, CEM III/A, CEM III/B</td>
</tr>
<tr>
<td></td>
<td>GGBFS</td>
<td>0.8</td>
<td>Not accepted for use</td>
</tr>
<tr>
<td>Finland</td>
<td>FA</td>
<td>0.4</td>
<td>CEM I, CEM II/A-S, CEM II/A-D, CEM II/A-V, CEM II/A-LL, CEM II/A-M, CEM II/B-S, CEM II/B-V, CEM II/B-M, CEM III/A, CEM III/B</td>
</tr>
<tr>
<td></td>
<td>MS</td>
<td>10/20</td>
<td>CEM I, CEM II/A-S, CEM II/A-D, CEM II/A-V, CEM II/A-LL, CEM II/A-M, CEM II/B-S, CEM II/B-V, CEM II/B-M, CEM III/A, CEM III/B</td>
</tr>
<tr>
<td>Iceland</td>
<td>FA</td>
<td>0.8</td>
<td>Additions included in the cement are taken into account as type II addition in the concrete</td>
</tr>
<tr>
<td></td>
<td>MS</td>
<td>10 in AX</td>
<td>Additions included in the cement are taken into account as type II addition in the concrete</td>
</tr>
<tr>
<td></td>
<td>GGBFS</td>
<td>0.6</td>
<td>CEM I, CEM II/A-L, CEM II/A-S, CEM II/B/S, CEM II/A-D, CEM II/A-V, CEM II/B-V, CEM III/A</td>
</tr>
<tr>
<td>Norway</td>
<td>FA</td>
<td>0.2/0.4</td>
<td>CEM I, CEM II/A-S, CEM II/B-S, CEM II/A-D, CEM II/A-V, CEM II/B-V, CEM III/A</td>
</tr>
<tr>
<td></td>
<td>MS</td>
<td>10/20</td>
<td>CEM I, CEM II/A-S, CEM II/B-S, CEM II/A-D, CEM II/A-V, CEM II/B-V, CEM III/A</td>
</tr>
<tr>
<td></td>
<td>GGBFS</td>
<td>0.6</td>
<td>CEM I, CEM II/A-S, CEM II/B-S, CEM II/A-D, CEM II/A-V, CEM II/B-V and CEM III/A</td>
</tr>
<tr>
<td>Sweden</td>
<td>FA</td>
<td>0.4</td>
<td>CEM I and CEM II</td>
</tr>
<tr>
<td></td>
<td>MS</td>
<td>10/20</td>
<td>CEM I and CEM II</td>
</tr>
<tr>
<td></td>
<td>GGBFS</td>
<td>0.6</td>
<td>CEM I and CEM II</td>
</tr>
</tbody>
</table>
Equivalent Performance of Combinations Concept - EPCC

- An addition added at the concrete mixer may be considered to perform in concrete in the same way as the same addition added at a cement factory.
- A continuous programme of control testing of the specific addition with the specific cement, has to be carried out
- Applied in the UK, Portugal, NL ...

- Restricted to cement and addition from specific sources
- Restricted to Portland cement CEM I 42,5 and 52,5
- Monthly testing of samples and statistical evaluation of the strength class of the combination addition taken into account in the same way as if it were a constituent in the cement
Rules for use of combinations

- The combination counts fully towards the cement content and water/cement ratio in concrete.
- Combinations are used in concrete in the same way as cements of the same composition and strength class.

UK terminology

CEM II /A-V

C II/A-V
EQUIVALENT CONCRETE PERFORMANCE CONCEPT ECPC

Background

- Survey of national provisions used with EN 206-1
 - Significant variations for the same exposure class
 - Impact of aggregates are ignored (at least in a direct way)
- National provisions do not lead to the same performance
Example of the range of carbonation resistances achieved with concrete conforming to a maximum w/c ratio of 0.55, minimum cement content of 300 kg/m³ and compressive strength of at least 40 MPa

Principles

- Reference concretes are selected on basis of long-term good track record in the local environment
- Candidate concrete is designed and tested to show that it has equivalent durability
- Assumption that this candidate concrete will give an equivalent performance in practice
Principles

- Candidate concrete has to be made with constituents conforming to European standards or provisions valid in the place of use
- Candidate concrete has no 'limiting values'
- Effects of execution of construction assumed to be the same
- Third party certification

In theory the procedure could be applied to any exposure class, but in practice it is limited to exposure classes where there are the necessary tools, i.e. test methods and procedures

Current work is focusing on XC, XD, XF and XS exposure classes

Uncertainty of measurement taken into account
Reference concretes

- Guidance will be provided, but national selection
- Prescribed concrete
- W/C ratio 0.02 less than the maximum for the exposure class
- All constituents, including aggregates, have to be clearly specified

Approach for XC exposures

- Applies to XC3 and XC4
- Depending on local interpretation, it may apply to XC1 and XC2
- Comparison based on 10 week accelerated carbonation test
- Test procedure being standardized by CEN/TC51(CEN/TC104)/JWG12/TG5
ECPC

Approach for XD/XS exposures

- Chloride diffusion test going for formal vote as TS
- Problems with calculating diffusion coefficient in high quality concrete in relatively short test (90 days)
- Diffusion coefficients change with time but not in uniform way
- Ageing factor needed

ECPC

Approach for XD/XS exposures

- Alternative approach based on rapid migration test being considered
- This test is quick, easy and not too expensive to undertake
- After three months the test result does not change significantly
Rapid migration test

Aging of fly-ash cement

![Aging of fly-ash cement graph]

DRCM $\times 10^{-12} \text{ m}^2/\text{s}$

CEM I

CEM II/B-V (25% fly ash)

CEM III/B (75% slag)

Approach for XF exposures

- TS 12390-9 are severe tests that may be used to specify performance directly
- May fail concretes that have a long service record in practice
- CEN/TC51(CEN/TC104)/JWG12 have been asked to develop a less severe relative test
- Will it be available in time?
Approach for XF exposures

Input to CEN/TC51(CEN/TC104)/JWG12/TG 4 on frost test methods. Nordic participants: Terje F. Rønning, Peter Utgennant, Dirch H. Bager

Production control

- Based on batch records plus the control of strength given by the candidate concrete
- Changes that have an adverse effect on strength are assumed to have an adverse effect on durability
- Not all changes that have an adverse effect on strength have an adverse effect on durability, but safe assumption
- Periodic confirmation of performance
Issues: Reference concrete

Issues: Uncertainty of measurement

- Precision of test methods not fully established
- More than one test specimen may be needed to gain adequate precision
- Aim is to have precision data for all test methods and then upgrade from TS to EN
Issues: Ageing effect

- Procedure has to be established
- Will be based on cement or cement/addition type
- Lack of data
Conclusions:
EN 206-1:2000 ➔ prEN 206:2011

The k-value concept
Unaltered + recommended k-value for GGBFS

Equivalent Performance of Combinations Concept
Incorporated.
A CEN TR will provide more detailed information
Use of EPCC to be decided nationally

Equivalent Concrete Performance Concept
Replaces annex E
A CEN TR will provide more detailed information
Use of ECPC to be decided nationally
As engineers we must predict the performance of our structures after 50, 100 or more years.
In some rare cases we can rely on long-term experience

Bridge at castle of Chazelet, French Alps
Joseph Monier - 1875

Deemed-to-satisfy requirements in Europe

European Standards EN 206 / EN 1992 / EN 13670 require the 31 member-nations to give provisions for 50 yrs service life based on:

- w/c
- Cement type
- Strength and/or min amount of cement
- Cover to the reinforcement
Deemed-to-satisfy requirements in Europe
(50 year service life)

Range of XC3 provisions for Portland Cement, CEM I
(carbonation, moderate moisture)
- UK \(\rightarrow \) \(w/c < 0.55 \) and 25 mm minimum cover
- DE \(\rightarrow \) \(w/c < 0.65 \) and 20 mm minimum cover

Deemed-to-satisfy requirements in Europe
(50 year service life)

Range of XS2 provisions for CEM I
(submerged in sea-water)
- UK \(\rightarrow \) \(w/c < 0.50 \) and 35 mm minimum cover
- NO \(\rightarrow \) \(w/c < 0.40 \) (+ silica fume) and 40 mm minimum cover
Why are the differences in recommendation from different groups of experts so great?

Let us look into the basics in degradation of concrete structures

Basics:

Environmental load versus Structural resistance

EN 206-1 & ISO 22965-1, Exposure classes

<table>
<thead>
<tr>
<th>Exposure Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XO</td>
<td>Without reinforcement or with reinforcement, but very dry</td>
</tr>
<tr>
<td>XC1</td>
<td>Dry or permanently wet</td>
</tr>
<tr>
<td>XC2</td>
<td>Wet, rarely dry</td>
</tr>
<tr>
<td>XC3</td>
<td>Moderate humidity Cyclic wet and dry</td>
</tr>
</tbody>
</table>
Environmental load on the structure
Chlorides from sea-water

North Sea platforms for oil exploration

Surface chloride concentration, C_s, versus height above sea level

Also in this case the severity of the environmental and depends on the meso- and micro-climate
Gimsøystraumen bridge

Cs - Surface chloride concentration (% of concrete)

11.9 meter above sea level

wind
Structural resistance

The chloride diffusion coefficient has also a large scatter

Carbonation resistance depends on curing

Relative carbonation

wet curing (days)
Environmental load on the structure

Carbonation rate is heavily influenced by the humidity

For a particular structure, or structural member, the severity of the environmental load depends on the meso- and micro-climatic conditions.
Structural resistance

Depends on the actual concrete cover

Example from a residential complex in Oslo
Specified cover = 25 mm

Since all the input parameters to the models have a scatter, the output of the service life design will also have a scatter.

Example:
Depassivation of reinforcement
Design Service Life - fib & ISO

The design service life is the assumed period for which a structure or part of it is to be used for its intended purpose with anticipated maintenance but without major repair being necessary.

The design service life is defined by:
- A definition of the relevant limit state
- A number of years
- A level of reliability for not passing the limit state during this period

Limit states

states beyond which the structure no longer fulfils the relevant design criteria

Serviceability limit states (SLS)

states that correspond to conditions beyond which specified service requirements for a structure or structural member are no longer met

Ultimate limit state (ULS)

states associated with collapse or with other similar forms of structural failure
Various Limit States - corresponding reliability

Example: corrosion of rebars

- Formation of cracks
- Depassivation
- Collapse of structure

\[p_f \approx 10^{-4} - 10^{-6} \]
\[p_f \approx 10^{-1} \]

What is the service life of this structure??

- 109 yrs? (50%)
- 94 yrs? (30%)
- 70 yrs? (10%)
- 50 yrs? (2%)

Example: Depassivation of reinforcement
What is the service life of this structure??

- 94 years
- 30% probability for depassivation
- 20% probability for cracking and spalling

Direct background for fib and ISO’s engagement:

Brite Euram “DuraCrete” 1996-1999

Tromsø, Norway - Workshop 2001 with participation from Europe and North America
Probabilistic Service Life design

The main pillars of the concept are:

■ to accept that all parameters influencing the deterioration have a statistical spread (both environmental load and structural resistance).

■ The definition of “end of service life” must be quantifiable.

■ The concept is therefore Limit State and reliability based.

Resolution ISO/TC 71/N46 –
(9th Plenary Meeting, Oslo 2001-14)

"ISO/TC71 requests that the ISO/TC71 Secretariat inform the fib Secretariat of the intended establishment of ISO/TC71 activity (on Service Life Design – SH Comment) and expresses strong support for the development of a fib model code on Service Life Design of Concrete Structures"
It was a main objective to establish a methodology as close as possible to that applied in structural design.

fib TG 5.6 did therefore choose ISO 2394 “General principles on reliability for structures” as the main reference.

ISO 2390 is the “mother document” for CEN EN 1990.
fib MC SLD was approved by the *fib* General Assembly in Naples, June 2006.

Model code for service life design

fib Model Code 1990 is presently under revision.

fib Model Code 2010 was approved 3 months ago.

All the principles of *fib MC SLD* are implemented.
ISO TC-71 / SC-3 started their work in 2007 based on the fib document.

ISO TC-71 / SC 3 / WG 4 members:

Steinar Helland, convenor - Norway
Antony Fiorato - US
Zongjin Li - China
Yamei Zhang - China
Lasino - Indonesia
Hari - Indonesia
Siti - Indonesia
Sofia M. C. Diniz - Brazil
Tom Harrison - UK
Koji Sakai - Japan
Philip Bamforth - UK
Marcelo Ferreira - Brazil
Luiz da Silva Filho - Brazil

Mussa Awaleh - UK
Tamon Ueda, SC-7 - Japan
Takafumi Noguchi - Japan
L. da Silva Battagin - Brazil
Manuel Ramirez - Columbia
Viacheslav Falikman - Russia
Carmen Andrade - Spain
Christoph Gehlen - Germany
Peter Schiessl - Germany
Iria Doniak - Brazil
Steinar Leivestad, ex officio - NO
Gregory Zeisler, ex officio - US
Magne Maage, SC 7 - NO (corr)
Yuri Volkov - Russia (corr)
1. “Full probabilistic method”. Will seldom be possible for new structures due to lack of statistical data. Will be well applicable for assessments of existing structures.

2. “Partial factor method”. Based on design values for loads, capacities and geometrical characteristics.

3. “Deemed-to-satisfy” method: Applying tabulated numbers for w/c-ratio, rebar cover, crack width etc. Calibrated according to 1) and/or long-term experience.

4. “Avoidance of deterioration”. Avoid saturation, apply stainless steel, non-reactive aggregates etc.
The following requirement shall be fulfilled:

\[p(\{\}) = p_{\text{dep}} = p\{a - x_c(t_{SL}) < 0\} < p_0 \]

where

- \(p(\{\}) \): probability that depassivation occurs
- \(a \): concrete cover [mm]
- \(x_c(t_{SL}) \): carbonation depth at the time \(t_{SL} \) [mm]
- \(t_{SL} \): design service life [years]
- \(p_0 \): target failure probability

The variables \(a \) and \(x_c(t_{SL}) \) need to be quantified in a full probabilistic approach.

NOTE: The limit state "depassivation" is only relevant for structures with sufficient humidity to support a corrosion process.

Verification by full probabilistic format (Carbonation):

Design model:

\[x_c(t) = W \cdot k \cdot \sqrt{t} \]

- \(x_c(t) \): carbonation depth at the time \(t \) [mm]
- \(W \): Influence of climate (rain, humidity etc)
- \(k \): factor reflecting basic resistance under ref. conditions
Verification by full probabilistic format
(marine structures)

The following limit state function shall be fulfilled:

\[P \{ \} = p_{dep} = p \{ C_{\text{Crit.}} - C(a, t_{SL}) < 0 \} < p_0 \]

where
- \(P \{ \} \): probability that depassivation occurs
- \(C_{\text{Crit.}} \): critical chloride content [wt.-%/binder]
- \(C(a, t_{SL}) \): chloride content at depth \(a \) and time \(t \)
- \(a \): concrete cover [mm]
- \(t_{SL} \): design service life [years]
- \(p_0 \): target failure probability

Verification by full probabilistic format
(marine structures)

The ingress of chlorides in a marine environment may be assumed to obey the following equation:

\[
C(x, t) = C_s - (C_s - C_i) \cdot \left[\text{erf} \left(\frac{x}{2 \cdot \sqrt{D_{\text{app}}(t) \cdot t}} \right) \right]
\]

\[
D_{\text{app}}(t) = D_{\text{app}}(t_0) \left(\frac{t_0}{t} \right)^\alpha
\]

Fick's 2nd law of diffusion with a time dependent diffusion coefficient
Verification by partial factor format (carbonation)

The following limit state function need to be fulfilled:
\[a_d - \kappa_{c,d}(t_{SL}) \geq 0 \]
where
- design value of the concrete cover - design value of the carbonation depth \(\geq 0 \)

The design value of the concrete cover \(a_d \) is calculated as follows:
\[a_d = a_{num} - \Delta a \]
where \(a_{num} \) nominal value for the concrete cover
\(\Delta a \) safety margin (permitted deviation) of the concrete cover

The design value of the carbonation depth, at a time \(t_{SL} \), \(\kappa_{c,d}(t_{SL}) \) is calculated as follows:
\[\kappa_{c,d}(t_{SL}) = \kappa_{c,k}(t_{SL}) \eta \]
where
- \(\kappa_{c,k}(t_{SL}) \) characteristic value of the carbonation depth at a time \(t_{SL} \) [mm], e.g. mean value of the carbonation depth
- \(\eta \) partial safety factor of the carbonation depth [-]

Verification by deemed-to-satisfy format

...is a set of pre-accepted rules for
- Dimensioning
- Material and product selection
- Execution procedures

Normally elements like:
- Cement type
- Max w/c
- Cover thickness
- Crack width limitation
Verification by deemed-to-satisfy format

...is a set of pre-accepted rules........

Pre-accepted by a responsible standardisation body on behalf of society, public and building owner

The provisions must be calibrated/verified by

- by the full-probabilistic method and/or
- on the basis of long-term experience

Verification by avoidance of deterioration format

...implies that the deterioration will not take place due to:

- Separation of environmental load from structure (membranes etc)
- Using non-reacting materials (stainless steel etc)
- Separation of reactants (keeping below a certain degree of moisture etc)
- Supressing the reaction (electrochemical methods etc)
Other deterioration mechanisms dealt with:

- Freeze-thaw
- Chemical attack
 - Acid
 - Sulphates
 - Alkalie-aggregate reactions

No time-dependent deterioration model available with broad international consensus

The full probabilistic format is therefore difficult to apply.

ISO/DIS 16204 was published in August for international inquiry

Inquiry ended on February 14th

Final voting and publication expected in 2012
ISO 16204 will also be in line with the principles given by ISO TC-98 in 2008 for service life design of structures in general.

Scope

This International Standard is intended for the use by national standardization bodies when establishing or validating their requirements for durability of concrete structures.

The standard may also be applied:

- for assessment of remaining service life of existing structures, and
- for the design of service life of new structures provided quantified parameters on levels of reliability and design parameters are given in a national annex to this International Standard.
Choice of binder in severe exposure classes

Swedish experiences and guidelines

Presentation at the Nordic workshop on

Durability aspects of fly ash and slag in concrete

15-16 February 2012 in Oslo, Norway

By Christer Ljungkrantz, Cementa AB

Present Swedish ”guidelines”

- SS 13 70 03:2008 Concrete – Application of EN 206-1 in Sweden

- Trafikverket TRV (Swedish Transport Administration):
 - TRVK Bro 11
 - AMA Anläggning 10 and TRVAMA Anläggning 10

"Severe exposure classes": XS 3, XD 3 and XF 4.
Choice of binder according to SS 13 70 03:2008
Concrete – application of EN 206-1 in Sweden

Exposure class XS 3, XD 3: \((W/C \leq 0,40)\)
CEM I, CEM II/A-S, CEM II/A-D, CEM II/A-V, CEM II/A-LL,
CEM II/A-M. (Strength class \(\geq 42,5\))

Exposure class XF 4: \((W/C \leq 0,45)\)
CEM I, CEM II/A-S, CEM II/A-V, CEM II/A-LL,
CEM II/A-M with max 5 % "D". (Strength class \(\geq 42,5\))

The additions S, D or V may alternatively be added to CEM I in corresponding amount.

Requirements for concrete binders according to AMA Anläggning 10 and TRVAMA Anläggning 10

The two documents contains requirements for material, and execution of civil engineering structures. For bridges and tunnels the following apply:

Cement shall fulfil the requirements for CEM I in SS-EN 197-1
Cement shall at least fulfil the requirements in
- SS 134202 Moderate heat cement (MH)
- SS 134203 Low alkali cement (LA)
- SS 134204 Sulfate resisting cement (SR)
Fly ash may be added with max 6 % in XF 4 and max 11 % in other exposure classes.
Present situation

The cement type CEM I 42,5 R MH LA SR has been required by TRV and its predecessors since around 1985, and is accordingly the dominating cement for civil engineering structures in severe exposure classes.

The cement type is manufactured in Sweden under the name "Anläggningscement". Last years volume exceeded 400 kton and was produced at both Degerhamn and Slite factory.

Rationale for use of Anl, durability aspects

Demand for very long service life (120 years) for the TRV-structures
A strong reduction in number of salt frost damages followed the introduction of the cement type.
Temperature cracking susceptibility is low due to moderate heat development and favorable development of strength-, elasticity- and creep-properties in early age.
Sulfate resistance in some ground and tunnel structures.
Low alkali content against slow reacting aggregates and possible interaction with salt frost attack.
Earlier experiences with blended cements during the 1980:ies

Fly ash cement with about 25 % ash. Also used for bridges. Production stopped due to problems with air entraining and frost resistance.

Slag cement with about 65 % slag. Mainly for massive structures like power stations. Production stopped due to cracking and self-healing problems.

Present use of CEM II cements

CEM II/A-LL is the dominant cement for house building since more than 10 years.

CEM II/A-V and CEM II/B-M (S-LL) are at present under development and testing.

The aim is for house building purpose, but concrete with the cement CEM II/A-V is also tested in severe salt-frost environment at the SP/CBI exposure sites.
Anl CEM II? Yes but

Assure that the reliable and consistent very good salt frost resistance is not at risk.

Impact of variable fly ash LOI on dosage of air entrainer and air pore system.

Deteriorating effect of slag on salt frost scaling in carbonated concrete.

Assure that the enhanced chloride diffusion resistance is not set aside by lower threshold values for start of corrosion.

Maintain low temperature cracking susceptibility, sulfate resistance and tolerance against alkali reactive aggregate.

Replace binder specifications by functional requirements on the concrete?

Functional requirements on concrete for civil engineering structures could enable a more free choice of binders and concrete composition.

This is however a very delicate task, considering the difficulty of establishing criteria, the scatter of test methods and the number of test methods required to assure an solution, as safe as the present well known one, when it comes to all the different perspectives of bridge durability.
MODELLING THE REACTION OF FLY ASH AND SLAG BLENDED CEMENTS

POST DOC KLAARTJE DE WEERDT, SINTEF/NTNU

The ultimate goal

- Properties of anhydrous binders
- Phase assemblage and porosity
- Mechanical properties and durability
The ultimate goal

- Properties of anhydrous binders
- Phase assemblage and porosity
- Mechanical properties and durability

GEMS
Gibbs free Energy Minimisation Software

- Developed at PSI, Switzerland for Geochemical systems
- Database has been extended for Portland cement system CEMDATA2007 by e.g. B. Lothenbach, T. Matschei, G. Möschner, T. Schmidt

http://gems.web.psi.ch/
http://www.empa.ch/plugin/template/empa/*/62204/---/l=1
What do we need to know?

1. Reactive content of OPC and fly ash/slag as well as its composition

2. Kinetics of OPC and fly ash/slag reaction

3. The hydrate assemblage
REACTIVE CONTENT AND ITS CHEMICAL COMPOSITION

Characterization of FA and slag

Siliceous fly ash (V):
- Reactive CaO < 10%
- Reactive SiO₂ > 25%
- CaO + Al₂O₃ + SiO₂ > 70%

Calcereous fly ash (W)
- Reactive CaO > 10%
- If CaO [10-15%] → reactive SiO₂ > 25%
- If CaO > 15% → compr strength 28 d > 10 MPa

Granulated blast furnace slag (S)
- SiO₂ + CaO + MgO > 75% mass
- (CaO + MgO)/SiO₂ > 1
Characterization of FA - norms

Chemical requirements
- Loss on ignition (<5%, 2%-7%, 4%-9%)
- Chloride content <0.1%
- Sulphuric anhydride < 3%
- Free calcium oxide <2.5%
- Reactive calcium oxide <10%
- Reactive silicon dioxide >25%
- Silicon dioxide, aluminium oxide and iron oxide >70%
- Total content of alkalis <5%
- Magnesium oxide <4%
- Soluble phosphate <0.1‰

Physical requirements
- Fineness >0.045mm <40%, <12%
- Activity index >75%
- Soundness <10mm
- Particle density
- Initial setting time <100% compared to 100% OPC
- Water requirement <95%

Characterization - research

Chemical characterization
- Composition reactive phase: XRF combined with XRD-Rietveld
- Phase composition and distribution: SEM-BSE/EDS

Physical characterization
- Fineness: laser diffractometry / SEM-BSE
- Particle shape: SEM-BSE
Characterization - research

Chemical characterization
- Composition reactive phase: XRF combined with XRD-Rietveld
- Phase composition and distribution: SEM-BSE/EDS

Physical characterization
- Fineness: laser diffractometry / SEM-BSE
- Particle shape: SEM-BSE

Potential impact of changes is composition

Al₂O₃/SiO₂ = 33%, CaO/SiO₂ = 18%

Al₂O₃/SiO₂ = 14%, CaO/SiO₂ = 16%
Potential impact of changes is composition

\[\text{Al}_2\text{O}_3/\text{SiO}_2 = 33\%, \text{CaO}/\text{SiO}_2 = 18\% \]

\[\text{Al}_2\text{O}_3/\text{SiO}_2 = 34\%, \text{CaO}/\text{SiO}_2 = 118\% \]
Methods to assess kinetics

<table>
<thead>
<tr>
<th>Methods</th>
<th>OPC</th>
<th>Blended cements</th>
</tr>
</thead>
<tbody>
<tr>
<td>TGA - amount of bound water</td>
<td>V</td>
<td>/</td>
</tr>
<tr>
<td>- CH consumption</td>
<td>/</td>
<td>V (?)</td>
</tr>
<tr>
<td>XRD-Rietveld</td>
<td>V</td>
<td>/</td>
</tr>
<tr>
<td>SEM (image analysis + EDS)</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>29Si NMR (Si phases)</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>Selective dissolution</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Isothermal calorimetry</td>
<td>V</td>
<td>V (?)</td>
</tr>
<tr>
<td>Chemical shrinkage</td>
<td>V</td>
<td>V (?)</td>
</tr>
</tbody>
</table>

Methods to assess kinetics

<table>
<thead>
<tr>
<th>Methods</th>
<th>OPC</th>
<th>Blended cements</th>
</tr>
</thead>
<tbody>
<tr>
<td>TGA - amount of bound water</td>
<td>V</td>
<td>/</td>
</tr>
<tr>
<td>- CH consumption</td>
<td>/</td>
<td>V (?)</td>
</tr>
<tr>
<td>XRD-Rietveld</td>
<td>V</td>
<td>/</td>
</tr>
<tr>
<td>SEM (image analysis + EDS)</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>29Si NMR (Si phases)</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>Selective dissolution</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Isothermal calorimetry</td>
<td>V</td>
<td>V (?)</td>
</tr>
<tr>
<td>Chemical shrinkage</td>
<td>V</td>
<td>V (?)</td>
</tr>
</tbody>
</table>

Methods to assess kinetics

<table>
<thead>
<tr>
<th>Methods</th>
<th>OPC</th>
<th>Blended cements</th>
</tr>
</thead>
<tbody>
<tr>
<td>TGA - amount of bound water</td>
<td>V</td>
<td>/</td>
</tr>
<tr>
<td>- CH consumption</td>
<td>/</td>
<td>V (?)</td>
</tr>
<tr>
<td>XRD-Rietveld</td>
<td>V</td>
<td>/</td>
</tr>
<tr>
<td>SEM (image analysis + EDS)</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>(^{29})Si NMR (Si phases)</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>Selective dissolution</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Isothermal calorimetry</td>
<td>V</td>
<td>V (?)</td>
</tr>
<tr>
<td>Chemical shrinkage</td>
<td>V</td>
<td>V (?)</td>
</tr>
</tbody>
</table>

Methods to assess kinetics

<table>
<thead>
<tr>
<th>Methods</th>
<th>OPC</th>
<th>Blended cements</th>
</tr>
</thead>
<tbody>
<tr>
<td>TGA - amount of bound water</td>
<td>V</td>
<td>/</td>
</tr>
<tr>
<td>- CH consumption</td>
<td>/</td>
<td>V (?)</td>
</tr>
<tr>
<td>XRD-Rietveld</td>
<td>V</td>
<td>/</td>
</tr>
<tr>
<td>SEM (image analysis + EDS)</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>(^{29})Si NMR (Si phases)</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>Selective dissolution</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Isothermal calorimetry</td>
<td>V</td>
<td>V (?)</td>
</tr>
<tr>
<td>Chemical shrinkage</td>
<td>V</td>
<td>V (?)</td>
</tr>
</tbody>
</table>

What is the "filler effect" and what is caused by the reaction of the SCM?
Potential impact of the kinetics

Slow reaction of the SCMs
- reduction in the amount hydration products formed
- slower strength development

HYDRATE ASSEMBLAGE
Hydrate assemblage

C-S-H changes upon addition of SCMs

- Ca/Si ratio
- Al uptake – Al/Si ratio
- Na⁺, K⁺ uptake

Composition changes with

- curing time
- temperature
- replacement level
CONCLUSION
The ultimate goal

Properties of anhydrous binders

Phase assemblage and porosity

Mechanical properties and durability

The ultimate goal

composition of SCMs

Properties of anhydrous binders

Phase assemblage and porosity

Mechanical properties and durability

kinetics of reaction

hydration products
Motivation

Limited information available on the impact of curing on the porosity of systems with slag

Needed for
 • Mix design and service life design
 • Requirements to construction
Chloride ingress
(non-steady state chloride migration)

© Geiker, Canut and Jensen
Nordic Workshop, Durability aspects of fly ash and slag in concrete, Oslo, Feb 2012

Chloride migration coefficient

© Geiker, Canut and Jensen
Nordic Workshop, Durability aspects of fly ash and slag in concrete, Oslo, Feb 2012
Chloride migration coefficient vs pore volume (MIP)

Porosity characterisation by MIP
Impact of slag (20°C, saturated)

Total pore volume

Threshold pore diameter

Volume vs. Threshold
Impact of slag: $20^\circ C$, saturated

Impact of temperature (saturated)

0% slag: Higher and more percolated porosity

$55^\circ C$

$20^\circ C$
Impact of temperature (saturated)

High slag: No negative impact at 2 years

Impact of moisture

Higher and more percolated porosity if sealed

© Geiker, Canut and Jensen
Nordic Workshop, Durability aspects of fly ash and slag in concrete, Oslo, Feb 2012
Conclusions and perspectives

Impact of both slag addition and curing on
• threshold pore sizes and/or pore volume
• chloride ingress

No negative effect of 55°C on 2 years old 70% slag paste

Needed:
Long term studies reflecting realistic conditions

References

Canut, M. Pore structure in blended cement pastes. PhD thesis, 2011,
Department of Civil Engineering, Technical University of Denmark

Canut, M. and M.R. Geiker. Impact of curing on the porosity development of
cement pastes with and without slag. in proceedings ICCC XIII. 2011.
Madrid: p. 260 and CD

Jensen, M.M. Optimisation of sample preparation for SEM and investigation
of pore system characteristics in cement paste. MSc thesis, Spring 2010,
Department of Civil Engineering, Technical University of Denmark
Influence of curing temperature on development of compressive strength and resistance to chloride ingress of concrete with different binder systems

Martin Kaasgaard, Claus Pade, Erik Pram Nielsen
Danish Technological Institute

Background

Scope 1

- In Denmark, the maturity concept is used for estimating the strength development of a concrete as a function of temperature – based on data measured at 20 degrees

Input to:
- Optimization of curing
- Striping of formwork
- Evaporation protection
- Selection of binder combination
- Early age crack control
Background

Scope 2

Is it possible to use a similar relation to describe the development of resistance to chloride ingress?

Input to:
- selection of binder combination
- optimization of curing
- choice of maturity at first exposure

Experimental program

Each concrete type: eq. w/c-ratio at 0.40, dmax = 22 mm

78 Ø150 cylinders
30 Ø100 cylinders
Durability aspects of fly ash and slag in concrete

Strength development (in Maturity-days)

Curing temperature, °C

Compressive strength, MPa

SRPC

SRPC + 25% fly ash

RPC

RPC + 25% fly ash

56 days
28 days
7 days
2 days
1 day
Strength development (in Maturity-days)

Compressive strength, MPa vs. Curing temperature, °C

Strength development

Ultimate strength significantly affected by curing temperature?

Rate is examined up to 45 MPa for practical purposes
Relative rate of strength development

At high temperatures, the rate of strength development is dependent on the degree of hydration!

The energy of activation may be a function of temperature!
Relative rate of strength development

Resistance to chloride ingress (CTH vs. maturity days)

Durability aspects of fly ash and slag in concrete
Resistance to chloride ingress (CTH vs. maturity days)

Resistance to chloride ingress

- Practical implications – curing strategy

SRPC + 25% fly ash

RPC + 25% fly ash
Concluding remarks

- The maturity relation by Freiesleben provides an accurate description of the rate of strength development for curing temperatures up to ~30 °C.
- The accuracy of this relation drops significantly for curing temperatures above 30°C, where the rate becomes highly affected by the degree of hydration.
- The ultimate strength of a concrete is remarkably affected at curing temperatures around 60 °C.
- Performance of fly ash concretes is greatly improved by high-temperature initial curing.
- Slag cement concretes show very good resistance to chloride ingress at short curing times and at all studied curing temperatures.
- All studied concretes show remarkably different behaviour with respect to both strength development and resistance to chloride ingress, and therefore...
 - it is recommended to carry out performance testing of a concrete at different temperatures prior to execution, in order to plan an optimum curing strategy.
The Effect of SCM on Alkali-Aggregate Reaction in Concrete

Oslo Workshop on Durability, Feb. 15 2012

R. Doug Hooton

UNIVERSITY OF TORONTO
DEPARTMENT OF CIVIL ENGINEERING

Occurrences of ASR in Canada

(CSA A864-00)
ASR Affects all Types of Structures (an equal opportunity destroyer of concrete)

Coniston Dam (near Sudbury)
No problem after 40 years due to use of fly ash in concrete

Lower Notch Dam

No problem after 40 years due to use of fly ash in concrete

Coniston Dam (near Sudbury)
The pore solution of concrete is dominated by alkali (sodium and potassium) hydroxides that originate from the cement. Certain siliceous aggregates may react with the alkali hydroxides to form an alkali-silica gel. This gel has the capacity to imbibe water and swell, causing internal pressures that may result in expansion and cracking of the concrete.
Calcium appears to play a role in altering ASR gel, raising its viscosity, increasing swelling pressure and recycling alkalis to continue ASR.
Pore Solution Analysis

- Cement pastes
- Sealed and cured
- Pore pressed at range of ages
- Solution analysed by titration (OH-) & flame photometry (Na & K)

See Barneyback & Diamond 1981

Pore solution in 1st 24 hours

After 24h, mainly K, Na, and OH

S. Diamond
Pore Solution alkalinity from 15 to 600 days for portland cement paste

From S. Diamond 1983

The “final” OH⁻ conc. of pore solution is closely linked to cement alkali content

- For a given w:c ratio, the “final” alkali concentration (in sealed systems) is proportional to cement alkali content.
- For a very high alkali cement (Na₂Oequiv of 1.4%), the final OH⁻ ion conc. is ~ 1N, a very concentrated solution used in ASTM C1260!

S. Diamond
Pore Solution after 24 h (with portland cement)

• Essentially alkali hydroxide solutions: Na\(^+\), K\(^+\), OH\(^-\).
• The solution is also saturated with respect to Ca\(^{2+}\), but its solubility is low in alkali solutions due to common ion effect.
• Unless leaching or moisture movement (or some other ionic ingress) occurs, the alkali hydroxide solution concentrations remain relatively constant over time.

Pore Solution after 24 h (with portland cement)

• Essentially alkali hydroxide solutions: Na\(^+\), K\(^+\), OH\(^-\).
• The solution is also saturated with respect to Ca\(^{2+}\), but its solubility is low in alkali solutions due to common ion effect.
• Unless leaching or moisture movement (or some other ionic ingress) occurs, the alkali hydroxide solution concentrations remain relatively constant over time (but with SCM's the pore solution alkalinity changes over time as alkalis get taken up in hydrated phases).
Role of Alkalis

Effect of the pH of the alkali solution on the solubility of amorphous silica

pH of Concrete is 13-14

Crystalline silica solubility is low at high pH at ambient temperatures

How do SCMs Mitigate ASR?

• The main factor appears to be a reduction in pore solution alkalinity due to incorporation of alkalis into the lower Ca/Si C-S-H which is also increased by presence of Al₂O₃ in SCMs to form low Ca/Si C-A-S-H.
Effect of alumina in C-S-H on alkali binding

S.-U. Hong, F.P. Glasser (2002)

This explains the beneficial effect of fly ash, slag & metakaolin in alkali binding, as well as improvements with low Ca/Si C-S-H

Composition of the C-S-H

- The Ca/Si molar ratio of the C-S-H is lower; reduced from about 1.9 for Portland cement to as low as ~1.6 for silica fume and Class F fly ash mixes.
 - Partly due to incorporation of ‘extra’ Si atoms derived from SCMs, but also have lower Ca.
- The Al/Ca ratio is higher when SCM contains high amounts of reactive Al₂O₃, especially metakaolin and fly ash.
 - The Al³⁺ is tetrahedrally coordinated, substituting for silicon.

<table>
<thead>
<tr>
<th>Composition</th>
<th>Ca/Si</th>
<th>Al/Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland</td>
<td>1.94</td>
<td>0.050</td>
</tr>
<tr>
<td>8% Silica fume</td>
<td>1.60</td>
<td>0.053</td>
</tr>
<tr>
<td>8% Metakaolin</td>
<td>1.69</td>
<td>0.074</td>
</tr>
<tr>
<td>25% Blast-furnace slag</td>
<td>1.83</td>
<td>0.056</td>
</tr>
<tr>
<td>25% Class F ash</td>
<td>1.57</td>
<td>0.095</td>
</tr>
<tr>
<td>25% Class C ash</td>
<td>1.73</td>
<td>0.069</td>
</tr>
</tbody>
</table>

T. Ramlochan, 2003
Reduction in Pore Solution Alkalinity with SCMs (Slag + SF)

When pore solution alkalinity was $< -0.32 \text{ M}$, no ASR expansion in ASTM C1293 Concrete prism tests after 2 years

(Bleszynski, Hooton & Thomas, 2000)

Summary Plot of 2-Year Concrete Prism Expansion with Spratt Aggregate
Relationship between Expansion and Pore Solution Alkalinity

This data suggests that a suitable threshold to control expansion is 320-365 mM/L

(Bleszynski, Hooton & Thomas)
Picton Field study 1998:
- silica fume and slag
- high-alkali cement
-(8 mixes)
- Spratt reactive aggregate
- field pavements vs. lab.

See ICAAR 2009 Proceedings

Effect of Fly Ash on Pore Solution Composition

High-Alkali Cement Paste with 25% Fly Ash

![Graph showing OH Concentration vs. Age (days) for different mixes with and without fly ash.](image)

- Control
 - $\text{CaO/Na}_2\text{O}_e = 27.7 / 1.65$
- Fly Ash
 - $17.5 / 1.68$
 - $13.6 / 3.77$
 - $6.38 / 1.41$

Shehata & Thomas
Effect of Fly Ash on Pore Solution Composition

High-Alkali Cement Paste with ‘F’ & ‘C’ Fly Ash

- 27.7% CaO, 1.65% Na₂O
- 6.38% CaO, 1.41% Na₂O

Shehata & Thomas

Effect of Silica Fume on Pore Solution Composition

High-Alkali Cement Paste with Silica Fume

Bound alkali is released slowly over time. But in real concrete exposure, 8% SF controls ASR >10y

Shehata & Thomas

26
Effect of Fly Ash on Pore Solution Composition

High-Alkali Cement Paste with 5% Silica Fume & ‘F’ Fly Ash

- ‘F’ Ash = 6.38% CaO, 1.41% Na$_2$O$_e$

<table>
<thead>
<tr>
<th>OH Concentration (M/L)</th>
<th>0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (days)</td>
<td>0</td>
<td>200</td>
<td>400</td>
<td>600</td>
<td>800</td>
<td>1000</td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5% Silica Fume</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5SF / 10FA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5SF / 15FA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shehata & Thomas

15% FA stabilizes bound alkali

Effect of Fly Ash on Pore Solution Composition

High-Alkali Cement Paste with Silica Fume & ‘C’ Fly Ash

- ‘C’ Ash = 27.7% CaO, 1.65% Na$_2$O$_e$

<table>
<thead>
<tr>
<th>OH Concentration (M/L)</th>
<th>0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (days)</td>
<td>0</td>
<td>200</td>
<td>400</td>
<td>600</td>
<td>800</td>
<td>1000</td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5% Silica Fume</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5SF / 20FA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5SF / 30FA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shehata & Thomas
Effect of Fly Ash on Pore Solution Composition

High-Alkali Cement Paste with Silica Fume & ‘C’ Fly Ash

- 'C' Ash = 27.7% CaO, 1.65% Na$_2$O$_e$

Similar stabilization of [OH-] found with 25 & 35% slag (Blezynski et al)

![Graph showing OH Concentration vs Age for different fly ashes](image)

Concrete Prism Test

CSA A23.2-14A ASTM C 1293

- 420 kg/m3 cementitious material
- NaOH added to yield 1.25% Na$_2$O$_e$ by mass of Portland cement
 - $0.42 \leq W/CM \leq 0.45$
- Concrete prisms
 - 75 x 75 x 250 mm (min)
- Stored over water at 38°C
 - (and nominally 100% RH) for 2 years
Effect of Fly Ash on ASR Expansion

Concrete Prisms with 25% Fly Ash & Spratt Aggregate

Effect of Calcium Content of Fly Ash on ASR Expansion

Concrete Prisms with 25% Fly Ash (All ashes < 4.0% Na₂Oₑ)

Thomas Durability aspects of fly ash and slag in concrete
Expansion of Concrete Prisms with Slag

Spratt - 1.25% Na₂Oₑ (by mass of PC)

Effect of Metakaolin on ASR Expansion

Thomas & Innis

Ramlochan
Accelerated Mortar Bar Test
CSA A23.2-25A ASTM C 1260 RILEM AAR-2

Aggregate/cementitious material = 2.25
W/CM = 0.5
Portland cement = 0.8 to 1.0% Na₂Oₑ

Mortar bars, 25 x 25 x 250 mm, stored in 1M NaOH at 80°C for 14 days

80 °C Mortar Test appears to work for assessing mitigation but should be confirmed by concrete prism data
Accelerated Mortar Bar vs. Concrete Prism Test

Expansion Test Results

Compiled by Thomas
Steephill Falls Spillway on Magpie River, Ontario

• 50% Slag Concrete made with ASR aggregate in 1988 is in excellent condition after 20 years.
• There was also no petrographic evidence of any ASR activity after 10 years.
• Note that Concrete was placed during the winter.

Lower Notch Dam, Ontario
20% to 30% fly ash used with high-alkali cement and highly reactive aggregate

Excellent field performance after 40 years (based on visual inspection and petrographic examination)
(Hooton, Thomas, Rogers, Fournier Site Visit 2010)
Jan. 2012 Concrete International

50 Years Old and Still Going Strong

Fly ash puts paid to ASR

by Michael Thomas, R. Doug Hooton, Chils Rogers, and Benoit Fournier

50y old Nant-Y-Moch Dam, Wales

40y old Lower Notch Dam, Ontario

CI Jan. 2012

The 2 dams with fly ash are undamaged and cores exhibit low DRI
Site Established in Kingston, Ontario in 1991
6 different concrete mixtures reinforced and non-reinforced blocks and slab for each mix
Spratt coarse aggregate and local non-reactive fine aggregate

Hooton, Rogers, MacDonald, Ramlochan 2012 (in press)

Sept. 1991 Kingston Site

<table>
<thead>
<tr>
<th>Binder</th>
<th>Mix 1</th>
<th>Mix 2</th>
<th>Mix 3</th>
<th>Mix 4</th>
<th>Mix 5</th>
<th>Mix 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/cm</td>
<td>0.4</td>
<td>0.39</td>
<td>0.39</td>
<td>0.38</td>
<td>0.37</td>
<td>0.34</td>
</tr>
<tr>
<td>Alkali Loading</td>
<td>1.64</td>
<td>2.67</td>
<td>2.46</td>
<td>2.34</td>
<td>1.91</td>
<td>3.28</td>
</tr>
<tr>
<td>(of PC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kg/m³ Na₂Oequiv.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All mixes had total CM = 415 kg/m³
All made with Spratt ASR Coarse Aggregate
(siliceous limestone)
80°C Spratt Mortar Bar Expansions

CSA A23.2-25A, ASTM C 1260

RILEM AAR-2

<table>
<thead>
<tr>
<th>Mix #</th>
<th>Binder Type and Proportions</th>
<th>Mortar Bar Expansion in Per Cent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>14 Day</td>
</tr>
<tr>
<td>1</td>
<td>HAPC, 50% + GGBFS, 50%</td>
<td>0.059</td>
</tr>
<tr>
<td>2</td>
<td>HAPC, 82% + fly ash, 18%</td>
<td>0.111</td>
</tr>
<tr>
<td>3</td>
<td>HAPC, 75% + GGBFS, 25%</td>
<td>0.187</td>
</tr>
<tr>
<td>4</td>
<td>HAPC, 25% + silica fume cement, 75% + GGBFS, 25%</td>
<td>0.041</td>
</tr>
<tr>
<td>5</td>
<td>LAPC, 100%</td>
<td>0.435</td>
</tr>
<tr>
<td>6</td>
<td>HAPC, 100%</td>
<td>0.315</td>
</tr>
</tbody>
</table>

Block 6, 100% High-Alkali PC at 8 Years
Cracking in Low-alkali PC mixture at 8 years

38°C Concrete Prism Expansions to 9 Years (but not boosted to 1.25% alkali)

Inside containers, prisms sealed in bags with 100ml water
16-year old 0.6x0.6x2.0 m concrete beams exposed outdoors in Kingston (mixes: 420kg/m3)

Cracking in large beams noticed at ~0.04-0.07% expansion---similar to 38C concrete prisms

Hooton and Rogers, 2008

20-year Reinforced Beam Expansions
Area of steel = 1.41%
(4-25M and 8-20M bars)
20-year Pavement Slab Expansions

Mix 6: High-alkali Cement Concrete Lab vs 20-Year Field Exp’n
If you test an aggregate and determine that is alkali-reactive,….

- What are the options?
- I will review the Canadian CSA options.
- Similar approaches have been adopted by AASHTO and are now being considered by ASTM and by RILEM

A) CSA Allows Performance Testing

A23.2-28A
Standard practice for laboratory testing to demonstrate the effectiveness of supplementary cementing materials and lithium-based admixtures to prevent alkali-silica reaction in concrete

1 Scope
This Standard Practice describes the procedures to be followed to demonstrate the effectiveness of supplementary cementing materials and lithium-based admixtures or combination thereof, in preventing excessive expansion caused by alkali-silica reaction. The supplementary cementing materials are as defined in CSA A3001.

Allows the use of reactive aggregates with following preventive measures:

- Limiting the alkali content of the concrete
- Use of fly ash
- Use of slag
- Use of silica fume
- Use of ternary blends

The actual level of prevention varies with “risk” as defined by:

- Reactivity of the aggregate
- Nature of the structure (incl. design life)
- Exposure condition

Basis for the CSA A23.2-27A Guide for Risk Minimization

- Pooled concrete prism data from labs across Canada
- Data from Several Field Exposure Sites in Canada and USA.
- Field cases of mitigated ASR (eg. Lower Notch and Magpie River Dams in Ontario)
- Data is being constantly added to update the standard.
Table 2
Degree of Alkali-Silica Reactivity of Aggregates

<table>
<thead>
<tr>
<th>Classification of the Degree of Alkali-Silica Reactivity</th>
<th>1-Year Expansion (%) by Test Method C 1293 (see Notes A and C)</th>
<th>14-Day Expansion (%) by Test Method C 1260 (see Notes B and C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-reactive</td>
<td><0.040 %</td>
<td><0.10%</td>
</tr>
<tr>
<td>Moderately reactive</td>
<td>0.040 - 0.120 %</td>
<td></td>
</tr>
<tr>
<td>Highly reactive</td>
<td>>0.120 %</td>
<td>>0.15%</td>
</tr>
<tr>
<td>Extremely reactive</td>
<td>>0.230 %</td>
<td>>0.40%</td>
</tr>
</tbody>
</table>

Table 3
Determination of the Level of Risk of ASR

<table>
<thead>
<tr>
<th>Size and concrete environment</th>
<th>Degree of Reactivity of the Aggregate (from Table 2)</th>
<th>Non-reactive</th>
<th>Reactive</th>
<th>Extremely</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Moderately</td>
<td>Highly</td>
</tr>
<tr>
<td>Non-massive and dry (see Notes A and B)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massive and dry (see Notes B and C)</td>
<td></td>
<td></td>
<td>Level 1</td>
<td>Level 2</td>
</tr>
<tr>
<td>All concrete exposed to humid air, buried or immersed (see Note D)</td>
<td></td>
<td></td>
<td>Level 1</td>
<td>Level 3</td>
</tr>
</tbody>
</table>

Note A: A "massive" element has a least dimension of one meter or more.
Note B: A dry environment corresponds to ambient average relative humidity condition lower than 60%, normally only found in internal structural elements of buildings.
Note C: A risk of alkali-silica reaction exists for massive concrete elements in a dry environment because the internal concrete has a high relative humidity.
Note D: A non-massive concrete element constantly immersed in sea water does not present a higher risk of ASR than a similar element exposed to humid air, buried in the ground, or immersed in pure water because the alkali concentration of sea water (30 g/L NaCl >0.51 M NaCl or Na) is lower than the alkali concentration of the pore solution of most concrete.
Table 4
Level of Prevention

<table>
<thead>
<tr>
<th>ASR Risk level from Table 3</th>
<th>Temporary Elements (<5 years)</th>
<th>Required Service Life of 5 to 75 years</th>
<th>Required Service Life of greater than 75 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>2</td>
<td>V</td>
<td>W</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>V</td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>5</td>
<td>W</td>
<td>Z</td>
<td>ZZ</td>
</tr>
</tbody>
</table>

V = Accept for use without any preventive measure. W, X, Y, Z = Preventive measures are required (see Table 5).

Table 6 Use of SCMs for counteracting alkali-silica reaction

<table>
<thead>
<tr>
<th>Type of SCM</th>
<th>Total alkali content of SCM %</th>
<th>Chemical requirement (% oxides)</th>
<th>Prevention level W</th>
<th>Prevention level X</th>
<th>Prevention level Y</th>
<th>Prevention level Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fly ash</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><3.0</td>
<td></td>
<td></td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>35</td>
</tr>
<tr>
<td>CaO < 8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaO = 8%–20%</td>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>CaO > 20%</td>
<td></td>
<td></td>
<td>‡</td>
<td>‡</td>
<td>‡</td>
<td>‡</td>
</tr>
<tr>
<td>3.0–4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaO < 8%</td>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>CaO = 8%–20%</td>
<td></td>
<td></td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>45</td>
</tr>
<tr>
<td>CaO > 20%</td>
<td></td>
<td></td>
<td>‡</td>
<td>‡</td>
<td>‡</td>
<td>‡</td>
</tr>
<tr>
<td>>4.5</td>
<td></td>
<td></td>
<td>‡</td>
<td>‡</td>
<td>‡</td>
<td>‡</td>
</tr>
<tr>
<td>Blast-furnace slag</td>
<td><1.0</td>
<td>None</td>
<td>25</td>
<td>35</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>Silica fume</td>
<td><1.0</td>
<td>None</td>
<td>2.0 × Alkali content</td>
<td>2.5 × Alkali content</td>
<td>3.0 × Alkali content</td>
<td>‡</td>
</tr>
</tbody>
</table>

‡ need to test using CSA A23.2-28A

Cement replacement level (% by mass)
Table 6 (d) TERNARY BLENDS

When two, or more, SCM’s are used together to control ASR, the minimum replacement levels given in Table 6 for the individual SCM’s may be partially reduced provided that the sum of the parts of each SCM is greater than, or equal to, one. For example: when silica fume and slag are combined, the silica fume level may be reduced to one third of the minimum silica fume level given in Table 6 provided that the slag level is at least two thirds of the minimum slag level given in Table 6.

Conclusions

- The effectiveness of silica fume, fly ash or blast-furnace slag in controlling ASR expansion is related to the ability of these SCMs to reduce pore solution alkalinity and maintain its depressed levels over time.
- These binders have lower Ca/Si C-S-H which promotes alkali binding
- Fly Ash, Slag and SF-ternary binders also have more Al in the C-S-H, which also promotes alkali binding
- The CSA Guide uses knowledge gained from all available lab and field data to allow design based on risk minimization.
The Norwegian System for Performance Testing of Alkali-Silica Reactivity (ASR) – Some Experiences

Jan Lindgård (SINTEF)

Co-author:
P.A. Dahl (SINTEF)

What is “performance testing”?

= pre-documentation of binders or concrete recipes in the laboratory

Alkali reactive aggregate

Documented non-reactive concrete?

Moisture

Is the binder able to counteract ASR?
Background

- Alkali reactive aggregates are present in most parts of Norway
 - How should we utilize these aggregates safely in concrete?

- ASR performance testing have been included in the Norwegian regulations for 15 years
 - Has been frequently used (>175 test series)
 - Are our test procedures and system for approval reliable?

- Research is going on world wide with an aim to develop one or more reliable performance test methods
 - e.g. within RILEM TC 219-ACS (2007-2012)
 - PhD study within COIN (2007-2012)

The Norwegian system for performance testing

- Regulations: Norwegian Concrete Association (NB) publ. no. 21: "NB21"
 - Published in 1996
 - Voluntary approval arrangement
 - Revised in 2004
 - Normative reference to NS-EN 206-1

- Applications of the Norwegian performance test
 - Alkali threshold for an aggregate combination
 - Alkali threshold for a binder (e.g. blended cement)
 - Reference "worst case" alkali reactive aggregates applied
 - Actual concrete recipes ("job-mixes")
Performance test method applied in Norway for 15 years: Norwegian 38°C CPT

- **Prism size:**
 - cross-section: 100·100 mm²
 - length: 450 mm

- **100 % RH**
 - prisms stored on a grid, above water

- **38°C (heated room)**

- **Exposure time: 1-2 years**
 - Dependent on type of binder

- **Measurements**
 - Expansion
 - Weight increase (QC)

The Norwegian system for performance testing

Ambition

- Stop approx. 95 % of potential harmful concrete recipes
 - Same security level as other deterioration mechanisms
 - Avoid stopping too many non-reactive concrete recipes

Validity

- The documentation from performance testing is valid as long as the reactivity of the concrete is not increased
- The reactivity of the concrete is considered to increase if:
 - Increased alkali content (but more of the pozzolanic material may be added)
 - Decreased content of pozzolanic material or other SCMs
 - Increased content of reactive rock types (beyond a specified limit)
Review of experiences

- About 150 test series have recently been reviewed
 - Lindgård et al. (ICAAR 2008, NCR 2010)
 - About 45% contain fly ash binder
 - About 20% include silica fume
 - About 15% include fillers with possible pozzolanic effect (PhD-thesis Bård Pedersen)
 - Less than 3% contain slag (ggbs) cement
Typical results

Repeatability (3 parallel prisms): c.o.v. ~ 6-9 %

Within laboratory - and multi laboratory variations: Satisfactory

Exposure time (year)
Expansion (%)

Typical results
Performance testing of binders

Reference "worst case" aggregate comb. - NRF/RC
CEM I
~ 5 kg Na₂O eq./m³

CEM II/A-V
(Norcem fly ash cement)
5-8.5 kg Na₂O eq./m³

Exposure time (years)
Expansion (%)

Fly ash, silica fume, slag
Other binders

1
2
NB21, appendix C

- List of all "safe binders" documented is available at the web-page of NCA – updated continuously
 - The documentation is valid for all types, amounts and combinations of Norwegian aggregate types (included all the alkali reactive ones)
- Crucial important for exploitation of Norwegian aggregate resources
 - Long distance transport of aggregates is costly and not environmental friendly
 - Aggregate and concrete producers do not have to document their materials separately (unless they will try to document a higher alkali limit than approved for all Norwegian aggregate types)

Example (NB21, appendix C, Table C1):
Maximum allowed alkali content (included all alkalis in the SCM) for the manufacture of non-reactive concrete containing all types, amounts and combinations of Norwegian alkali reactive aggregates:

<table>
<thead>
<tr>
<th>Binder</th>
<th>Limit value, alkali-content (Na₂O-eq.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norcem Standard FA cement from plant Kjøpsvik</td>
<td>< 7.0 kg/m³</td>
</tr>
<tr>
<td>[CEM II/A-V, NS-EN 197-1, fly ash content > 17 %]</td>
<td></td>
</tr>
<tr>
<td>Norcem Standard FA cement from plant Brevik</td>
<td>< 6.5 kg/m³</td>
</tr>
<tr>
<td>[CEM II/A-V, NS-EN 197-1, fly ash content > 17 %]</td>
<td></td>
</tr>
<tr>
<td>Embra miljøsement [CEM II/B-5, NS-EN 197-1,</td>
<td>< 4.0 kg/m³</td>
</tr>
<tr>
<td>slag content ≥ 32 %]</td>
<td></td>
</tr>
</tbody>
</table>
Challenge no. 1: Duration of the test (1-2 years)

- Hardly any "job mixes" tested
- Very relevant for an aggregate - or concrete producer to determine the alkali threshold for their aggregates, despite the long testing time
- Cement producers frequently test new binders, but some problems have occurred
 - Change in supplier of fly ash Requires new documentation required

Challenge no. 2: Leaching of alkalis

- If too much alkali leaching Leads to unreliable alkali thresholds
 - Debated internationally
- Some extra security are, however, built in the Norwegian regulations
 - "Worst case" reactive aggregates applied when testing binders (far more reactive than most Norwegian aggregates in common use)
 - Most commercial concretes containing SCMs will normally contain less alkalis than the critical alkali limits documented for various binders
 - Norcem have also declared "upper alkali limits" for their cements to be used for calculating the concrete alkali content according to the Norwegian regulations
- Alkali leaching is being extensively investigated in the PhD study
 - Norwegian CPT compared with three RILEM CPTs and ASTM C-1293
Some conclusions

➢ Despite the duration of the test (1-2 years), the Norwegian system for performance testing has proven to be an advantageous and flexible tool for the Norwegian concrete industry to document alkali thresholds for binders and aggregates.

➢ The Norwegian system for performance testing is regarded to be at least as safe as the regulations to prevent rebar corrosion and frost damage.

➢ By using the Norcem Standard-FA cement (incl. ≥ 17 % fly ash) a general acceptance alkali limit of 6.5 (or 7.0) kg Na2O eq./m³ are approved in combination with all Norwegian aggregate types in common use.

➢ The possible influence of alkali leaching on the measured expansions in our Norwegian CPT can not be neglected.
 ➢ currently an issue for research internationally (e.g. RILEM)
 ➢ part of my PhD study (2007-2012)
Rob Polder, TNO/TUDelft

Effects of slag and fly ash on corrosion in concrete in chloride environment

Introduction

- Netherlands: slag in cement from 1930s
- CEM III/B LH HS c. 70% slag market leader >1970
- 10 million m³ slag concrete per year!
- Fly ash since 1980s, CEM II/B-V 32.5
- Both: sold as cement, equal strength @ 28 days
- C. 2000: CEM III/A 52.5 R, 57% slag for precast
- Typical technology 340 kg/m³ w/c 0.43, rounded siliceous aggregate, 32 mm
- Experience, research, focus on NL!
durability in the field; slag

- 1980 Wiebenga, 50 marine structures up to 40 years age: corrosion is rare
- 1996 Polder & Larbi prisms 16 year submerged in North Sea, chloride penetration much lower than OPC, higher resistivity →
- 2005 Polder & De Rooij 6 marine structures, chloride profiles, cover depth!
- 1 case of corrosion with slag (low cover, quality) →

XS3, effective D_{CI} after n years * 10^{-12} m2/s; C_s

<table>
<thead>
<tr>
<th>ref</th>
<th>CEM I</th>
<th>CEM III/B</th>
<th>n year, type</th>
<th>C_s % cement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polder & Larbi 1996</td>
<td>1 - 3 (~w/c, start!)</td>
<td>0.3</td>
<td>16, subm. prisms</td>
<td>#</td>
</tr>
<tr>
<td>Polder & De Rooij 2005</td>
<td>0.14/0.28 (sheltered)</td>
<td>0.33</td>
<td>40, pier</td>
<td>~ 3</td>
</tr>
<tr>
<td>-</td>
<td>0.12-0.19</td>
<td>20-33, 3 quays</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>0.12</td>
<td>40, barrier</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>0.24</td>
<td>20, barrier</td>
<td>2.2 (~5)</td>
<td></td>
</tr>
</tbody>
</table>

2.5 – 5, ~ start exposure
Cl transport & Resistivity

- 1998 Salt/dry (1/6 day, 26 weeks); CEM, w/b
- D_{Cl}, C_s, @ 26 weeks

\[C_s/\% Cl/\text{cem} \]

\[\text{Def}(10^{-12} \text{m}^2/\text{s}) \]

- resistivity 1998 until 2010 (outside)
- 28 day CEM III/B > others
- mature CEM III/B \geq CEM V/A > CEM II/B-V > CEM I
- CEM II/B-V 27% fly ash: increase 2 – 6 months!

\[\text{Resistivity (ohm m)} \]

- 1 wk, 0.5 y, 2 y, 11 y
2000s: new test method (Tang et al.)

- accelerated transport potential field: migration
- rapid chloride migration, RCM, NT Build 492
- 10-60 V; 1-4 days, AgNO₃, calculate D_{RCM}
- analysis 500+ results
- cement, w/b, 28d – 3 year

$\bullet \ D_{RCM} \ (28 \ day) = A*\text{w/b} + B$
$\bullet \ A, B \ f(\text{binder})$
• $D_{RCM} = f(\text{time}, \text{CEM}) = D_0 \times (t_0/t)^n$

 t 28 d – 3 y; n?

- CEM I $n \approx 0.25$
- III >50% s $n \approx 0.4$
- II 30% f $n \approx 0.7$

slag and chloride at young age

- Caballero, MSc 2009
- CEM I, III/B mortar w/b 0.50
- D_{RCM} at 1, 2, 3, 7, 14, 28 day
- Early $D_{slag} > D_{OPC}$
- from 7 days on $D_{OPC} > D_{slag}$
- Resistivity corresponding
- CEM III/B after 50 years: start exposure @ 1 day 1.4 mm deeper penetration than @ 28 d.. ($t_{ini} - 4$ years)
- .. cure with sea water?
fly ash, silica fume

- 1990s 'new concrete mixes' for marine application.
- CEM I; 5% sf & 10% fly ash; CEM III/B; 5% silica fume
- 340 kg/m³ cement, w/b 0.43, D 16 mm
- immersion 3.5% NaCl 4 – 24 months (~NTBuild 443)
- 30 C! Cl profiles fitted, D_{eff}, C_{s} 20 C resistivity (rho)

![Graph showing chloride profiles and resistivity](image)

critical chloride content..

- literature: no effect of cement type (effect of w/b!)
- experiment: 26 weeks salt/dry cycles
- chloride profile, E_{steel}, Corrosion Rate
- slag (fly ash, both): lower CR than CEM I at same Cl
- statistical analysis E_{steel}
- prob of corr: f w/b, not CEM

- 1 CEM I, 3 CEM III..
- 55 w/b 0.55..
overview and conclusions

› Practice: >50 year 70% slag cement
› C_s same as Portland
› D_{Cl} lower, n(time), resistivity higher
› C_{crit} same

› Fly ash (20-30%) roughly similar as slag
› early age: slag OK (> 7 days); fly ash slow (> 60 d)
› slag & fly ash (Σ 50%): similar as 70% slag (slower)
› chloride, corrosion: slag (fly ash) better performance!
The effect of slag and fly ash on interaction of chloride penetration and carbonation

Nordic Workshop on
Durability aspects of fly ash and slag in concrete
Hannele Kuosa
VTT Technical Research Centre of Finland

Contents

Background information
Duralnt-project testing results – mixes with +FA/+BFS and Reference
 1. Effect of fully carbonated concrete on Cl-migration
 2. Effect of surface carbonation on Cl-migration
 3. Effect of chlorides on carbonation
 4. (Release of fixed chlorides – no results here)

Summary

Detailed information in Duralnt-project Task 3 report:
"Laboratory test results 2009 – 2011"
http://www.vtt.fi/sites/duraint/index.jsp
Background: Chloride-carbonation interaction - with +FA/+BFS

+ Effect of +FA and +BFS on migration coefficient (D_{basal})
+ Penetration of chlorides into non-carbonated concrete - can be expected to decrease with the use of BFS/FA
- Effect of carbonation & drying on chloride penetration - with +FA/+BFS
 • effects on the pore structure - coarsening of the pore structure
 • effect of +FA/+BFS in comparison with no additions (OPC)
+ Effect of chlorides on the rate of carbonation - with +FA/BFS
 • Chemical changes - chemically bound chlorides
 • Effects of free chlorides - hygroscopy >> decrease of CO$_2$-diffusion
 >> decrease of carbonation
 • Change of physical properties by carbonation – cement quality, amount of +FA/+BFS
- Effect of liberation of bound chloride due to carbonation
 • Effect of +FA/+BFS on carbonation depth >> more free chlorides after carbonation
 >> larger Cl-concentration gradient (more penetration but also outward flow)
 • Increase of moisture content by free chlorides (hygroscopy)
 >> decrease of CO$_2$ –diffusion
In all, the overall long term effect of combined carbonation-chloride exposure must be based on studies, and modeling, considering:

- Type of combined carbonation-chloride exposure and
 - Submerged – no carbonation
 - Cyclic drying-wetting – includes carbonation
- All mix design and binding material aspects - OPC/+FA/+BFS

In DuraInt-project:

- Task 3: Laboratory test results on chloride-carbonation interaction
- Only tentative ways for modeling chloride-carbonation interactions (Task 5: Service life)

http://www.vtt.fi/sites/duraint/index.jsp

(DuraInt-project – Laboratory test results)

1. Effect of fully/through carbonated concrete on chloride migration

Mixes (concrete)

<table>
<thead>
<tr>
<th>Short code</th>
<th>Cement type</th>
<th>W eff/(Cement + 0,80xBFS +0,40×FA)</th>
<th>Binder materials</th>
<th>Total effective water [kg/m³]</th>
<th>Aggregates</th>
<th>Air content (fresh concrete) [%]</th>
<th>Compressive strength [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y05A2</td>
<td>CEM II/A-M(S-LL) 42.5 N</td>
<td>0,51 333 0 0 170 1899 1,4 42,8 57,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y05A5</td>
<td>CEM II/A-M(S-LL) 42.5 N</td>
<td>0,51 333 0 0 170 1844 4,4 36,9 50,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-BFS05A2</td>
<td>CEM II/A-LL 42.5 R & 50% Blast Furnace Slag</td>
<td>0,50 240 120 0 168 1888 2,2 43,5 66,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-FA05A2</td>
<td>CEM II/A-LL 42.5 R & 24% Fly Ash</td>
<td>0,50 300 0 72 165 1885 2,5 47,1 64,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR05A2</td>
<td>CEM I 42.5 N</td>
<td>0,50 321 0 0 160 1965 2,0 45,8 62,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
First:

D_{nssm} for non-carbonated concrete

(age 3 months, a’ 3 specimens)

- 50 % SLG
- 24 % FA

NT Build 492 (CTH-method)

Chloride migration testing (NT Build 492) with fully carbonated middle part in the chloride migration testing

RESULT:

Evaluation of chloride penetration for carbonated concrete, compared with non-carbonated concrete

Sawing in half 150 mm cubes at 4.9 months
E.g. for concrete with CEM II/A-LL 42.5 R and 24% FA, chlorides had clearly penetrated more through the carbonated middle zone than through the non-carbonated specimen side areas.

Split specimen surfaces with the carbonated middle zone after silver nitrate treatment:

- No numeric D_{nssm} values for carbonated concrete
- Photos for all the mixes (split specimen surfaces)

(Duraint Task 3 report: http://www.vtt.fi/sites/duraint/index.jsp)

>> Further testing with mortars and with carbonated specimen surface layer >>>
2. Effect of carbonated surface layer on chloride penetration and D_{nssm} - effect of FA/BFS

Mixes (mortars, aggregate < 2 mm)

<table>
<thead>
<tr>
<th>Short code</th>
<th>Cement type</th>
<th>Binder materials [kg/m³]</th>
<th>Total effective water [kg/m³]</th>
<th>Aggregate [kg/m³]</th>
<th>Air content (fresh mortar) (%)</th>
<th>Compressive strength at 28d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y05A2</td>
<td>CEM II/A-M(S-L)</td>
<td>576 0 0 290 920 395 4.1 43.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y-BF05A2</td>
<td></td>
<td>440 220 0 299 858 368 3.4 52.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y-FA05A2</td>
<td></td>
<td>542 0 130 304 835 358 4.6 45.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Testing with carbonated surface layer (A) and reference with no carbonation (B)

A) Carbonation:
- 2 months at RH 65% + 5 months at 4% CO₂

B) No surface carbonation (RH 65%)

D$_{nssm}$ -testing
NT Build 492:
A) with carbonated surface layer (~5…8 mm)
B) no surface carbonation

Detailed: Duralnt – Task 3 - Laboratory testing report
http://www.vtt.fi/sites/duraint/index.jsp
Effect of carbonated skin surface layer on chloride penetration

<table>
<thead>
<tr>
<th>Applied voltage [V]</th>
<th>30</th>
<th>60</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test duration [h]</td>
<td>3,5</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Carbonation [mm]</td>
<td>8,1</td>
<td>4,9</td>
<td>8,4</td>
</tr>
</tbody>
</table>

Obs! No comparision of the mixes here
- different voltages and test durations, and carbonation depths

Effect of carbonated surface layer on non steady state migration coefficient D_{nssm} (NT Build 429)

<table>
<thead>
<tr>
<th>Applied voltage [V]</th>
<th>30</th>
<th>60</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test duration [h]</td>
<td>3,5</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Carbonation [mm]</td>
<td>8,1</td>
<td>4,9</td>
<td>8,4</td>
</tr>
</tbody>
</table>
Surface carbonation increased the depth of chloride penetration achieved by the migration test (NT Build 492)
- The relative increase was more for mixes with added BFS and FA

Also non steady state migration coefficient, D_{nssm}, increased when there was surface carbonation
- The relative increase was more for mixes with added BFS and FA

Still migration coefficient (D_{nssm}) for mixes with FA and BFS was always lower than for the reference

(Duralnt-project – Laboratory test results)

2. Effect of chlorides on carbonation - effect of FA/BFS

Mixes (concrete) – the same as in testing no. 1

<table>
<thead>
<tr>
<th>Short code</th>
<th>Cement type</th>
<th>Binder materials [kg/m³]</th>
<th>Total effective water [kg/m³]</th>
<th>Aggre- gates</th>
<th>Air content (f fresh concrete) [%]</th>
<th>Compressive strength [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cement + 0.80×BFS +0.40×FA</td>
<td>Cement</td>
<td>BFS</td>
<td>FA</td>
<td>Total</td>
<td>7d</td>
</tr>
<tr>
<td>Y05A2</td>
<td>CEM II/A-M(S-LL) 42.5 N</td>
<td>0,51</td>
<td>333</td>
<td>0</td>
<td>0</td>
<td>170</td>
</tr>
<tr>
<td>Y05A5</td>
<td>CEM II/A-M(S-LL) 42.5 N</td>
<td>0,51</td>
<td>333</td>
<td>0</td>
<td>0</td>
<td>170</td>
</tr>
<tr>
<td>R-BF505A2</td>
<td>CEM II/A-LL 42.5 R & 50% Blast Furnace Slag</td>
<td>0,50</td>
<td>240</td>
<td>120</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>R-FA505A2</td>
<td>CEM II/A-LL 42.5 R & 24% Fly Ash</td>
<td>0,50</td>
<td>300</td>
<td>0</td>
<td>72</td>
<td>165</td>
</tr>
<tr>
<td>SR05A2</td>
<td>CEM I 42.5 N</td>
<td>0,50</td>
<td>321</td>
<td>0</td>
<td>0</td>
<td>160</td>
</tr>
</tbody>
</table>
Effect of chlorides on carbonation

First chloride penetration by NT Build 492 (age 3 months)

Carbonation:
- First at RH 65%, and 56 d at 4% CO₂ (RH 60%)
- 1) Cl-side and 2) NaOH-side

Additional reference (separate specimens):
- Carbonation first at RH 65%, and 56 d at 4% CO₂ (RH 60%)

Carbonation:
- 1) Cl-side
- 2) NaOH-side

No chlorides (= additional reference)

No chlorides (NaOH-side at Cl-migration testing)

Chlorides before carbonation; (Cl-side at migration testing)
Effect of chlorides on carbonation

- Chlorides in concrete degreased carbonation
- Carbonation with chlorides was 3% - 80% of the carbonation without chlorides
- No big differences between the concretes with
 - CEM II/A-M(S-LL) 42.5, and
 - with CEM II/A-LL 42.5 R +50% BFS or +24% FA
- With CEM I 42.5 N carbonation was minimal with chlorides
 - Concrete with CEM I 42.5 N (SR-cement) has low chloride binding capacity
 - Higher concrete moisture content/RH and water film thickness inside the pores
 - Pores may become blocked as a result of the salt crystallization in the pores network

Summary

Carbonation >>> increase of chloride penetration
- relative increase was more with +FA/+BFS
- but with +FA/+BFS always lower migration coefficient

but

Chlorides >>> degrease of carbonation
- with CEM I (SR) significant degrease
- with CEM II no big effect of +FA/+BFS

and

Effects of liberation of bound chlorides due to carbonation without and with +FA/+BFS
- no test results yet
- modelling aspects (see DuraInt Task 5 – Service life)
VTT creates business from technology
Field experience

- Along the Norwegian coastline there are a large number of important concrete structures exposed to a severe marine environment.

- For all these concrete structures, chloride-induced corrosion represents the most serious problem and threat to the operation and safety of the structures.
Concrete harbor structures

Along the Norwegian coastline there are approximately 10,000 port and harbor structures, most of which are concrete structures which have typically started to corrode within a period of about 10 years.

Concrete coastal bridges

Along the Norwegian coastline there are more than 300 large concrete bridges built after 1970, of which more than 50% are corroding.
Offshore concrete platforms

In the North Sea, 34 concrete platforms have been produced with high-performance concrete and very good durability. However, still corrosion of embedded steel has caused some very expensive repairs.

Norwegian marine concrete construction

- The concrete has typically been produced with pure portland cements, and more recently also with fly ash cements
- All year concrete construction (low curing temperatures during winter)
- High risk for early-age exposure
Blast furnace slag cements (GGBS)

Since the first slag cements were introduced on the market (1888), extensive field experience and research in many countries have shown that such cements give a much higher resistance against chloride penetration than other cements.

Blast furnace slag cements (GGBS) (cont.)

In order to also get some experience with slag cements in Norwegian marine environments, some experimental work was carried out.
Objective

- Resistance against chloride penetration
 - General resistance
 - Early-age resistance
 - Effect of low curing temperature
- Frost resistance

Chloride diffusivity (RCM)

- Binder systems: GGBS 1 (34%), GGBS 2 (70%), HPC, OPC, PFA (20%)
- Curing temperatures:
 5, 12, 20 °C
- Early-age resistance
Chloride diffusivity (w/b = 0.45)

Chloride diffusivity (w/b = 0.38)
Chloride diffusivity (5°C)

Chloride diffusivity (12°C)
Chloride diffusivity (20 °C)

Freezing and thawing

- Three types of concrete with w/b = 0.37 (390 kg CEM III/B 42.5 + 39 kg CSF) and air void contents of 3 and 6% (0 %)

- Test methods
 - prEN 12390-9 (CDF) (TNO: 28 cycles)
 - SS 13 72 44 (SP: 112 cycles)
Freezing and thawing (cont.)

Both test methods showed that all three versions of the concrete with 70% slag cement had a good frost resistance regardless of varying air void content.

Conclusion

The above results indicate that binder systems based on blast furnace slag should give superior durability in a typical Norwegian marine environment compared to that of other types of binder system.
Motivation

In service:
- more than 10 000 concrete bridges
- nearly 1000 tunnels
- many ferry quays

Building of new bridges with required Service Life of 100 years:
- partial extreme exposure
- long and complex structures

With a capital value of bridges of 50 billion NOK and 100 years life span, each extended year of lifetime can bring an economic saving of 500 million NOK.

Reliable prediction and assessment for existing structures together with choosing proper materials and design becomes important.
The initiation phase is controlled by:
- Cover depth
- Diffusion of chlorides (concrete quality)

Depassivation is controlled by:
- $[\text{Cl}^-]$
- pH
- E_{steel}

The propagation phase is controlled by:
- Corrosion rate
- (Structural properties)

Key «material» parameters:
- D_{Cl}
- C_{crit}
- i_{corr}

Critical parameters for corrosion:

FA and slag generally decreases chloride diffusion rates

Time effects?

Increased resistivity decreases corrosion rates?
Effects of time to (age at) chloride exposure

Effects of time to (age at) chloride exposure
D\textsubscript{Cl} changes with time due to “ageing effect”

\[
\frac{D_{t}}{D_0} = e^{\left(\frac{t}{t_0}\right)^\alpha}
\]

17 different concretes exposed in Northern Norway
Change from 2.5 to 10 years

20% FA

17 different concretes exposed in Northern Norway
Change from 2.5 to 10 years

20% FA
The importance of resistivity

Concretes (sorted after 10 yrs results)

Chloride diffusion coefficient, De, $10^{-12} \text{ m}^2/\text{s}$

Depth at threshold chloride content (0.07%), mm

Critical depth for corrosion after 10 yrs

The importance of resistivity - D_{Cl}

Elektrisk resistivitet (\(\Omega\cdot\text{m}\))

Durability aspects of fly ash and slag in concrete

Nordic workshop, Oslo, Norway, February 15-16, 2012
The importance of resistivity - i_{corr}

![Graph showing the relationship between resistivity and corrosion rate](image1)

Andrade C.; Alonso C.: Construction and Building Materials Vol. 10 (5) 1996

The range of values obtained for resistivity in practice.

Durability aspects of fly ash and slag in concrete

Nordic workshop, Oslo, Norway, February 15-16, 2012
The influence of FA and slag on resistivity

Dosages as mass% of OPC

Water cured samples

Referanse
Durability aspects of fly ash and slag in concrete
Durability aspects of fly ash and slag in concrete

Blanding 3
0.40 ANL-FA 50% FA

Blanding 8
0.33 ANL-FA 38% FA
Critical parameters for corrosion

Key «material» parameters:

- **FA and slag generally decreases chloride diffusion rates**
- **Performance gets better over time for FA (and slag?)**
- **Increased resistivity decreases corrosion rates!**
- **FA and slag generally increases the electrical resistivity of concrete**

Needs to be resolved!
Frost Resistance of Concrete Containing Secondary Cementitious Materials

Experience from field and laboratory investigations

Peter Utgenannt
CBI - Swedish Cement and Concrete Research Institute

The SLAB METHOD for salt-frost scaling
CEN/TS 12390-9

The specimen is dried (65% RH, 20 °C) for 7 days before testing

The loss of mass/m² (scaling) is measured after 7, 14, 28, 42 and 56 cycles
Background

• The test method for scaling resistance (SS 13 72 44, CEN TS 12390-9) was developed based on experience from concrete with CEM I, w/b-ratio 0,40-0,50 and with entrained air.
• Today this test method is used for evaluating the scaling resistance of many different types of concretes with different binder types, additions, low w/b-ratio etc
• CEN TS 12390-9 is now being revised within CEN/TC51/WG12/TG4

Questions

• Is it possible to evaluate the scaling resistance of concrete with new cement types, additions and low w/b-ratio with the traditional scaling test (CEN/TS 12390-9)?
• How do ageing influence the scaling resistance of concrete produced with different cement types?
• Do we need to change the scaling test in order to better consider the possible ageing effects?
• Field investigations to correlate results from the field with results from the laboratory.
• Laboratory investigations to study the effect of ageing on the scaling resistance.
• Conclusions and suggestions
Temperature at the marine and highway exposure sites

Freeze/thaw cycle in the field

Highway exposure site: 2001-03-03 (15:37) to 2001-03-05 (15:33)

Limits for temperature cycle according to SS 13 72 44 “slab test”
Concrete qualities 1996

Six different binder types
- CEM I
- CEM II/A-LL
- CEM II/A-S
- CEM I + 5% silica
- CEM I + 30% slag
- CEM III/B (~70% slag) (Dutch slag cement)

Two binder types placed at the test site 1997
- CEM II/A-V
- CEM II/A-V + 3,8% silica

Concrete qualities

10 different concrete qualities per binder type

w/b 0.30 0.35 0.40 0.50 0.75
with entrained air ~4.5%
without entrained air 1-2%

CEM II/A-V w/b 0.40 and 0.42; ~4,5% air
CEM II/A-V +3,8% silica w/b 0.40; ~4,5 % air
Measuring external and internal damage

- Volume change

- Ultrasonic pulse transmission time

Highway environment – with entrained air
Highway environment – without entrained air

Volume change during the first five years

- CEM I
- CEM II/L-LL
- CEM II/L-S
- CEM I + 5% silica
- CEM I + 30% slag

Compatibility problem

Correlation - field vs laboratory 1996

Internal damage

Accelerating in lab test

Filled dots - with air
Unfilled dots - without air

W/b 0.75

2-3%
Testing of scaling resistance – laboratory versus specimens aged at the marine test site for two years

Scaling after 14 cycles, normal test time (g/m²)

- With entrained air
- Without entrained air

Conditioned 7 days before testing (g/m²)

Outdoor exposure for 2 years before testing (g/m²)

Laboratory investigation about the effect of ageing

Swedish Cement and Concrete Research Institute
Effect of ageing on the salt-frost resistance

Freezable water content – CEM I
Freezable water content – CEM I + 65 % slag

Concrete with CEM I
Uncarbonated → Carbonated

Concrete with CEM III
Uncarbonated → Carbonated

Durability aspects of fly ash and slag in concrete

Swedish Cement and Concrete Research Institute
Effect of the preconditioning time on the scaling results

Testing according to CEN/TS 12390-9 but with different conditioning periods (7, 14 and 21 days)

Cement types
- CEM I (SR LA MH)
- CEM II A-V (14% flyash, 5% limestone)
- CEM II B-M (S-LL) (18% slag, 8% limestone)

W/C-ratio 0.40
With 4.5% air
Conclusions

- After 14 years of exposure - Concrete with CEM I, CEM II/A-LL, CEM II/A-S, CEM I + 30% slag and CEM I + 5% silica as binder, with entrained air and w/b-ratio 0.50 or below, has good resistance to internal and external damage.

- Concrete with CEM III/B suffers from severe scaling even with a w/b-ratio of 0.50 and with entrained air.

- Ageing (carbonation) influences the scaling resistance, however different for different cement/binder types.

Conclusions

Results from laboratory testing (CEN/TC 12390-9) classifies most concrete qualities correctly. However...

- For concrete with low w/b-ratio (CEM I and CEM II-A) and with no entrained air the laboratory test may underestimate the scaling resistance (experience after 14 years)

- For concrete with high/medium contents of slag (both with and without air) the results from laboratory testing may overestimate the scaling resistance.
Conclusions

• In the revision of (CEN/TC 12390-9) changes should be made so that the effect of carbonation is better taken into account. For example a somewhat longer preconditioning time or conditioning in a somewhat increased CO₂ atmosphere (~1 vol %).

Conclusions

More research is needed!
• How much slag is suitable in an aggressive environment with regard to salt/frost attack?
• Effect of different curing regimes?
• How is the scaling resistance of blended cements (slag/flyash/limestone filler) influenced by ageing?
Predicting air entrainment and frost durability in fly ash concrete

Stefan Jacobsen, Margrethe Ollendorff, Mette R. Geiker
Dept of Structural Engineering, NTNU, Trondheim, Norway

Lori Tunstall, George W. Scherer
Princeton University, NJ, USA

Air entrainment - why

- Air voids can protect concrete against frost- and salt scaling damage
 - Place of escape for frost-induced flow and unrestrained ice formation (Powers, Helmuth 1949, 1953)
 - Increased effective CTE in frozen air-entrained concrete reducing thermal incompatibility to ice (Scherer et al 2005 a,b,c, 2007, 2010)
 - Air void shell quality varies by AEA-paste interaction, affecting ice propagation from void into bulk paste (Scherer 2011 MPPS 15p.)
 - Reduced degree of saturation (Fagerlund 1971)

- But air voids cannot save insufficiently cured concrete, over-saturated concrete, concrete with damaged pore structure due to heat curing, deleterious ageing effects etc.
Air entrainment and frost and salt scaling durability in Fly Ash Concrete:

- **WHEN sufficiently cured, FA concrete can be made durable against Frost and Salt scaling**
 - FA concrete as frost durable as OPC (14-28 d moist cure, ≥ 4 – 5 % air, spacing \(L \leq 0.23 \text{ mm} \), spec surface \(\alpha \geq 0.25 \text{ mm}^{-1} \)) V. Malhotra, A. Ramezanianpour Fly Ash in Concrete 2nd Ed Canmet MSL 94-45(1994), Jacobsen & Lahus ACI SP202 (2001) etc
 - FA concrete practically as salt frost scaling resistant as OPC (14-28 d moist cure, ≥ 5-6% air, spacing \(L \geq 0.20 \text{ mm} \), specific surface \(\alpha \geq 0.25-30 \text{ mm}^{-1} \)) though more variable Malhotra, Fly Ash in Concrete (1994), Bilodeau & Malhotra, Quebec (1993) etc
- **BUT (High Volume FA) Concrete: problem with low/slow curing**
- **AND FA Concrete: often difficult to entrain good air void system**

Air Antraining Agents (AEA): what and how?

- AEA: mixtures of various surfactants with more or less confusing names (vinsol resin, tall oil, synthetic tenside etc)
- AEA structure: hydrophilic (anionic) «head» (to liquid) and hydrophobic hydrocarbon chain «tail» (to air)
- AEA function: reduce water-air surface tension, adsorb to solid surfaces, stabilize air in fresh concrete. (There might also be additional effects)
- Du & Folliard (2005) propose AEA-distribution in fresh concrete:
 \[
 \text{AEA}_{\text{added}} = \text{AEA}_{\text{interface}} + \text{AEA}_{\text{adsorbed on solid}} + \text{AEA}_{\text{liquid}}
 \]
Problem: AEA and Fly Ash with variable carbon

- Carbon (high surface) adsorbs AEA, reducing air entrainment (in addition to effect of adsorption on pozzolan (several studies))
- HOWEVER, admixture details often not known, see for example study on AEA-SP compatibility (Nkinamubanzi P.C, Bilodeau A., Joliceur et al 2003) or in new study on air pore structure with AEA and Polycarboxylate based SP (Vollset&Mortensvik 2011)
- SO, limited applicability for concrete technologists beyond what brand name to choose due to no generic information whatsoever of the AEA
- How to select AEA and to predict air entrainment?

Foam Index (FI) – fast test of air entraining effect of binder/AEA combination

(Dodson 1990, gebler&Klieger 1983, Vestgarden 2005/2006, Harris et al 2008a,b,c etc)

- Shake water, binder powder and AEA (typically w/b = 2.5 for 15 sec)
- Observe the stability of the foam forming on top (typically 45 sec)
- Increase the AEA dosage drop-wise (often 20 µl 10% AEA solution) and repeat “shake-and-wait-procedure” until a stable foam is reached
- FI = concentration of AEA (in ml/kg = µl/g) of binder as foam remains stable
Foam Index - benchmark testing
Eur. FA, Norw. CEM 52.5, Sika Aer –S («synthetic tenside») (Ollendorff 2011)

(Sika Aer –S: recommended normal dosage = 0.01 – 0.08 % of cement weight = 0.1 – 0.8 μl/g, which is only ~1/10 of FI)

Figure 4.4: Foaming of pure water
Approach 1: Use correlation FI – air entrainment in concrete

- Gebler & Klieger (w/b = 0.40 – 0.48, 307 kg/m³ binder with 25 % FA
 3 ± 1 % air): correlation FI – AEA dosage for 6 % air is $R^2 = 0.93$ for 10 ashes /1 OPC reference («Dodson-Meiniger type»: 420 ml container, w/b = 2.5, 15 s shake/45 s rest)
- Vestgarden (2006) (w/b = 0.42, 20 % FA, 0.18 kg/420 kg binder incl 5 % SF): best correlation FI (automated shaker) - fresh air void content at constant AEA dosage after 10 minutes is $R^2 = 0.84$ for 9 ashes /1 OPC reference
- Harris et al (2008a) (w/b = 0.45, 335 kg binder with 20 % FA and 6.0 ± 1.0 % air): best correlation FI – AEA dosage for 6 % air is $R^2 = 0.94$ for 4 ashes manual bottle shake test (10 g powder, w/b = 2.5, $\varnothing = 45$ mm, $V = 132$ ml, 15 s shake/45 s rest)
Approach 2:

Adsorption and «fingerprinting» combined with Foam Index testing

- TGA and NMR for AEA adsorption and fingerprinting
 - High and low C fly ash
 - Different AEA (Saponified Rosin, Synthetic Olefin Sulfonate, Saponified Tall Oil, Neutralized Vinsol Resin)
- Foam index
 - High and low C fly ash
 - AEA with high and low adsorption
 - FI test – standard
 - FI test short time – “a lot AEA in”
 - FI test – wait 1 h after short test – foam stability? add AEA if necessary

FI – Air in concrete - data by Vestgarden (2006)

Foam Index vs Air in fresh concrete 10 min after mix, 0.18 kg Microair 100 AEA/m³ (400 kg binder, polycarboxylate SP)

\[y = 1.74x^{0.50} \]

\[R^2 = 0.84 \]
TGA to detect Adsorption of AEA on FA
Tunstall&Scherer (2012)

Clear differences on high-C FA
- SOS: no adsorption
- SR: adsorption

Tunstall&Scherer (2012) (contd.):
Neither Vinsol Resin nor Tall Oil have adsorption detectable with TGA
NMR spectra showed clear shifts for SR after adsorption on ash (whereas practically no shifts were observed on SOS which did not adsorb) (the identity of the adsorbed species will be determined by further NMR studies)

Figure 4: 1H NMR spectra for pure saponified resin AEA, and filtrate of AEA following mixing with high-carbon fly ash at mass ratios of AEA/Ash = 10:1 and 5:1. Peak centered near 3.0 ppm disappears and new peaks near 3.0 arise following exposure to the ash.

FI-tests performed on selected materials from adsorption (TGA, NMR) study

- **Standard:** 20 µL drops, 15 s shake/45 s wait
- **Short time – «a lot in at once»:** ½ amount of FI + 15 sec shake, then 20 µL drops, 15 s shake/45 s wait
- **Prolonged time:** after «Short time»: seal and wait 1 h, observe foam stability, if necessary add 20 µL drops, 15 s shake/45 s wait
Table 4.3.2: Foam index for standard and “short time” tests

<table>
<thead>
<tr>
<th>AEA</th>
<th>Concentration</th>
<th>Fly ash (LOI%)</th>
<th>Procedure</th>
<th>Foam Index μl/g ash</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR</td>
<td>40</td>
<td>High carbon(11.73)</td>
<td>Std</td>
<td>192.8</td>
</tr>
<tr>
<td>SR</td>
<td>40</td>
<td>High carbon(11.73)</td>
<td>Short</td>
<td>104</td>
</tr>
<tr>
<td>SR</td>
<td>40</td>
<td>Low carbon(2.40)</td>
<td>Std</td>
<td>18.4</td>
</tr>
<tr>
<td>SR</td>
<td>40</td>
<td>Low carbon(2.40)</td>
<td>Short</td>
<td>17.6</td>
</tr>
<tr>
<td>SOS</td>
<td>40</td>
<td>High carbon(11.73)</td>
<td>Std</td>
<td>40</td>
</tr>
<tr>
<td>SOS</td>
<td>40</td>
<td>High carbon(11.73)</td>
<td>Short</td>
<td>36</td>
</tr>
<tr>
<td>SOS</td>
<td>40</td>
<td>Low carbon(2.40)</td>
<td>Std</td>
<td>4.8</td>
</tr>
<tr>
<td>NVR</td>
<td>40</td>
<td>High carbon(11.73)</td>
<td>Std</td>
<td>32</td>
</tr>
</tbody>
</table>

Table 4.3.3: Foam index for “prolonged time” tests

<table>
<thead>
<tr>
<th>AEA</th>
<th>Fly ash(LOI%)</th>
<th>Stable time [s]</th>
<th>Additional ml/g ash</th>
<th>New FI μl/g ash</th>
<th>Increase %</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR</td>
<td>High carbon(11.73)</td>
<td>22.55</td>
<td>48</td>
<td>152</td>
<td>46.1</td>
</tr>
<tr>
<td>SR</td>
<td>Low carbon(2.40)</td>
<td>35</td>
<td>4.8</td>
<td>22.4</td>
<td>27.3</td>
</tr>
<tr>
<td>SOS</td>
<td>High carbon(11.73)</td>
<td>≥45</td>
<td>0</td>
<td>36</td>
<td>0</td>
</tr>
<tr>
<td>SOS</td>
<td>Low carbon(2.40)</td>
<td>≥45</td>
<td>0</td>
<td>4.8</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 4.3.4: Comparison of test time for the different procedures and their respective FI

<table>
<thead>
<tr>
<th>AEA</th>
<th>Fly ash(LOI%)</th>
<th>Standard Time Minutes</th>
<th>FI μl/g ash</th>
<th>“Short” Time Minutes</th>
<th>FI μl/g ash</th>
<th>“Long” Time Minutes</th>
<th>FI μl/g ash</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR</td>
<td>High carbon(11.73)</td>
<td>180</td>
<td>192.8</td>
<td>3</td>
<td>104</td>
<td>73</td>
<td>152</td>
</tr>
<tr>
<td>SR</td>
<td>Low carbon(2.40)</td>
<td>12</td>
<td>18.4</td>
<td>6</td>
<td>17.6</td>
<td>74</td>
<td>22.4</td>
</tr>
<tr>
<td>SOS</td>
<td>High carbon(11.73)</td>
<td>50</td>
<td>40</td>
<td>5</td>
<td>36</td>
<td>65</td>
<td>36</td>
</tr>
<tr>
<td>SOS</td>
<td>Low carbon(2.40)</td>
<td>5</td>
<td>4.8</td>
<td>4</td>
<td>4.8</td>
<td>64</td>
<td>4.8</td>
</tr>
</tbody>
</table>
Conclusion

• FI high for US AEA that adsorbs (SR – Saponified Rosin), both on US high carbon FA (FI very high = 192.4 μL/g) and on US low carbon FA (FI quite high = 18.4 μL/g compared to FI in benchmark test on 3FA, 1OPC and one AEA from Norwegian market (FI = 3.7-7.3)).

• FI low for US AEA that does not adsorb (FI = 4.8 for SOS – Synthetic Olefin Sulfonate) on US low carbon FA. FI also comparatively low for US AEAs that do not adsorb (FI = 40 and 32 for SOS and NVR - Neutralized Vinsol Resin) for US high carbon FA.

• FI – time dependency and foam stability affected by adsorption:
 – FI depends on time for the AEA that adsorbs (SR):
 • For “short” testing time FI always reduces compared to “std”
 • For “prolonged” time FI always increases compared to “short”;
 i.e. AEA must be added to retrieve the foam lost after 1 h waiting
 – FI is unaffected by time for the AEA that does not adsorb (SOS), i.e. foam remains stable after 1h.

• Air entraining mechanisms in FI test and fresh concrete are different. Still combination adsorption-FI as well as correlation FI- air in fresh concrete indicate usefulness of the FI test

• Further research on the function of air voids with FA and AEA needed
The effect of by-products on frost-salt durability of aged concrete

Durability aspects of fly ash and slag in concrete
Nordic Workshop, Oslo-Norway, 15-16 February 2012

Miguel Ferreira, Markku Leivo & Hannele Kuosa
VTT Technical Research Centre of Finland

Contents

1. DuraInt Project
2. Motivation & Goals
3. Testing procedures
4. Concrete mixes
5. Results
6. Final comments
Duralnt Project
Effect of interacted deterioration parameters on service life of concrete structures in cold environments

www.vtt.fi/sites/duraint
- Reports for field & laboratory testing, deterioration & service life modelling
- Excels database with testing results for different projects & field stations

Duralnt Project – Overview

Task 1: State of the art
Task 2: Long term field test
Task 3: Laboratory test with interaction
Task 4: Deterioration models with interaction
Task 5: Service life models with interaction
Task 6: International co-operation

Carbonation
Chloride ingress
Internal frost action
Frost salt action

Frost with & without salt ↔ Carbonation
Carbonation ↔ Chloride
Frost ↔ Chloride
Chloride ↔ Moisture
Motivation & Goals

- Concrete performance based on single deterioration mechanism
- *In situ* concrete subject to simultaneous exposure to several deterioration mechanisms
- Ageing influenced by hydration, drying, carbonation, etc.
- Research on ageing has shown it to be both positive or negative
 - Depends on composition, testing procedures, ageing time, etc.
 - What is the effect of ageing on performance with different cements, additions, additives, air contents, etc.?
- To understand the effect that varying surface ageing conditions (carbonation and drying) have on frost-salt scaling

Testing procedures

- Compressive strength – 150mm cubes at 28 days
 - SFS EN 12390-3:2009
- Fresh air and workability
- Air void parameters of hardened concrete – thin section analysis
 - VTT TEST R003:2000 – similar to ASTM C 457:2010
- Frost-salt scaling resistance – slab test with 3% NaCl & 56 cycles
 - CEN/TS 12390-9:2006
- Resistance to carbonation – 1% CO₂ for 56 days
 - Based on SFS EN 13295:2004
Testing procedures

EC-A
Standard procedure after casting
Frost-salt testing (56 cycles)

EC-C
At 65% RH, ageing with natural carbonation from 21 d until 1.2 – 1.3 years
Frost-salt testing (56 cycles)

EC-B
At 65% RH from 21 d until ca. 1.6 years
10 mm layer was sawed off, i.e. ageing without carbonation
Frost-salt testing (56 cycles)

• EC-C → Carbonation + drying at RH 65%
 Carbonated layer ≈ 1.3 year ageing at 65% RH
 Test surface

• EC-B → Only drying at RH 65%
 Carbonated layer sawn off (10 mm) after ≈ 1.6 year ageing at 65% RH
Testing procedures

EC-A
Standard procedure after casting
Frost-salt testing (56 cycles)

EC-B
At 65% RH from 21 d until ca. 1.6 years
10 mm layer was sawed off, i.e. ageing without carbonation
Frost-salt testing (56 cycles)

EC-C
At 65% RH, i.e. ageing with carbonation from 21 d until 1.2 – 1.3 years
Frost-salt testing (56 cycles)

EC-D & EC-E (2nd ageing with carbonation)
Carbonation at 65% RH for 3 months
Accelerated carbonation at 1% CO₂ (56 d)
Wrapped in plastic for 11 months
Frost-salt testing (56 cycles)

Concrete mixes

<table>
<thead>
<tr>
<th>Mix.</th>
<th>CEM Types</th>
<th>Binder kg/m³</th>
<th>Aggreg. kg/m³</th>
<th>w/b ratio</th>
<th>Fresh air %</th>
<th>Slump mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>I 42,5 N-SR</td>
<td>387</td>
<td>1796</td>
<td>0.42</td>
<td>5.9</td>
<td>115</td>
</tr>
<tr>
<td>M2</td>
<td>II/A-M(S-LL) 42,5 N</td>
<td>428</td>
<td>1709</td>
<td>0.42</td>
<td>5.9</td>
<td>180</td>
</tr>
<tr>
<td>M3</td>
<td>III/LL 42,5 R</td>
<td>241</td>
<td>1748</td>
<td>0.42</td>
<td>5.0</td>
<td>140</td>
</tr>
<tr>
<td>M4</td>
<td>I 52,5 R</td>
<td>417</td>
<td>1737</td>
<td>0.42</td>
<td>5.5</td>
<td>80</td>
</tr>
<tr>
<td>M5</td>
<td>II/A-LL 42,5 R + 50% BFS</td>
<td>434 (217)</td>
<td>1725</td>
<td>0.42</td>
<td>6.1</td>
<td>150</td>
</tr>
<tr>
<td>M6</td>
<td>II/A-LL 42,5 R + 23% FA</td>
<td>450 (106)</td>
<td>1706</td>
<td>0.45</td>
<td>5.0</td>
<td>170</td>
</tr>
</tbody>
</table>
Some BFS & FA characteristics

<table>
<thead>
<tr>
<th>Add.</th>
<th>CaO</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>MgO</th>
<th>Na/K₂O</th>
<th>ϖD Kg/m³</th>
<th>Blaine fineness m²/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFS</td>
<td>40</td>
<td>34</td>
<td>9.3</td>
<td>11</td>
<td>0.47/0.47</td>
<td>2.97</td>
<td>400</td>
</tr>
<tr>
<td>FA</td>
<td>4-7</td>
<td>45-55</td>
<td>20-30</td>
<td>3-5</td>
<td>1-2</td>
<td>2.20</td>
<td>≈ 250</td>
</tr>
</tbody>
</table>

- BFS – Finnsementti KJ400
- FA – Fineness N, Class A (EN 450-1:2005)

Results – Compressive strength & air void parameters

<table>
<thead>
<tr>
<th>Mix.</th>
<th>CEM types</th>
<th>R₂₈ days MPa</th>
<th>Pores <0.3mm %</th>
<th>Specific surface area kg/m³</th>
<th>Spacing factor mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>I 42,5 N-SR</td>
<td>46.4</td>
<td>3.5</td>
<td>16</td>
<td>0.35</td>
</tr>
<tr>
<td>M2</td>
<td>II/A-M(S-LL) 42,5 N</td>
<td>38.0</td>
<td>2.8</td>
<td>21</td>
<td>0.28</td>
</tr>
<tr>
<td>M3</td>
<td>II/A-LL 42,5 R</td>
<td>41.2</td>
<td>2.2</td>
<td>28</td>
<td>0.24</td>
</tr>
<tr>
<td>M4</td>
<td>I 52,5 R</td>
<td>58.5</td>
<td>0.6</td>
<td>34</td>
<td>0.33</td>
</tr>
<tr>
<td>M5</td>
<td>II/A-LL 42,5 R + BFS</td>
<td>46.0</td>
<td>2.6</td>
<td>37</td>
<td>0.18</td>
</tr>
<tr>
<td>M6</td>
<td>II/A-LL 42,5 R + FA</td>
<td>54.6</td>
<td>1.6</td>
<td>27</td>
<td>0.30</td>
</tr>
</tbody>
</table>
Results – Frost salt scaling (28 cycles)

- Reference, Ageing with and without carbonation

Results – Frost salt scaling (56 cycles)

- Reference, Ageing with and without carbonation
Results – 2nd round frost salt scaling (56 cycles)

- Reference, 1st round without carbonation, 2nd round with carbonation

![Graph showing carbonation depth](image)

Results – 2nd round frost salt scaling (56 cycles)

- Reference, 1st and 2nd round with carbonation

![Graph showing carbonation depth](image)
Final Comments

- Ageing testing procedure influences the frost salt scaling performance of the concrete – not considered in the reference test setup
- Carbonation influences negatively all tested concretes – should be compared only if identical quality of air void structure
- BFS seems to improve performance in tested concretes after ageing – early age frost salt performance testing not favorable
- FA performance inferior to BFS, but lower quality air void system could be influential factor

Thank-you!
Kiitos!

VTT creates business from technology
PERFORMANCE OF CONCRETE MIXED WITH FLY ASH OR BLAST FURNACE SLAG

Anders Lindvall
Ingemar Löfgren
Oskar Esping

Background

• Interest of using industrial bi-products in concrete exposed in severe environments in Sweden
 – Along thaw-salted road and in marine environments.
 • Exposure classes (EN 206-1). XS 1-3, XD 1-3 and XF 2 & 4.
 • Traditionally concrete made of Portland Cement (CEM I).
 – Partly replace Portland cement with
 • Pulverized Fly Ash (PFA).
 • Ground Granulated Blastfurnace Slag (GGBS).
 • Silica fume (SF).
• Why use industrial bi-products in concrete?
 – Decreased usage of energy.
 – Decreased environmental impact.
 – Improve properties of concrete.
PFA and GGBS in concrete

• Alternatives for usage in concrete
 – Additions in the cement. Portland composite cements (CEM II) and Slag cements (CEM III). Regulated in EN 197-1.
 – Additions at the concrete mixing plant. Regulated in EN 206-1, EN 450-1 and EN 15167-1.

• Properties of PFA and GGBS regulated in EN 405-1 and EN 15167-1
 – Historically variations in quality ⇒ variations in properties of concrete.
 – Chemical composition, e.g. mineral composition and LOI.
 – Physical properties, e.g. fineness.
 – Properties when combined with cement, e.g. setting time and AI.

• Regulations in EN 206-1 (addition at the mixing plant)
 – Equivalent Concrete Performance Concept (ECPC). Equivalent performance (e.g. durability) compared to a reference concrete.
 – Concept with k-factors. Performance of different binders is described with k-factors (normally calibrated against compressive strength of mortar or concrete).

Loss on ignition for PFA

Data from Thomas Cement (2012)
Activity index of PFA

Data from Thomas Cement (2012)

Activity index of GGBS

Data from Thomas Cement (2012)
Swedish regulations

- SS 13 70 03. Application of EN 206-1 in Sweden.
- AMA Anläggning. Regulations for infrastructure structures.

<table>
<thead>
<tr>
<th>Exposure class</th>
<th>Allowed additions of PFA [wt-% of CEM I]</th>
<th>Allowed additions of GGBS [wt-% of CEM I]</th>
</tr>
</thead>
<tbody>
<tr>
<td>X0 , XA 1</td>
<td>50</td>
<td>11</td>
</tr>
<tr>
<td>XC 1-2</td>
<td>50</td>
<td>11</td>
</tr>
<tr>
<td>XC 3-4, XS 1-2, XD 1-2, XF 1-3, XA 2</td>
<td>50</td>
<td>11</td>
</tr>
<tr>
<td>XS 3, XD 3</td>
<td>25</td>
<td>11</td>
</tr>
<tr>
<td>XF 4</td>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td>XA 3</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Investigations

- Investigate the properties of concrete mixed with combinations of Portland cement and PFA or GGBS
 - Additions according to SS 13 70 03. Exposure class XF 4.
 - Effect of additives described with the k-factor concept (PFA, $k=0.4$ and GGBS, $k=0.6$).

- Tests made
 - Compressive strength. EN 12390-3.
 - Resistance against chloride ingress. NT Build 492.
 - Frost resistance. SS 13 72 44 (EN 12390-9).

- Three projects
 - Research project financed by SBUF (Swedish construction industry's organisation for research and development). Lindvall (2012).
Investigations of Knutsson (2010)

- Concrete compositions. \((w/c)_\text{eq}=0.45\)
 - Portland cement (CEM I) mixed with PFA
 - No addition of PFA (reference).
 - 20 wt-% PFA of CEM I. \(k=0.4\).
 - 20 wt-% PFA of CEM I. \(k=1.0\).
 - AEA used to mix in extra air.
 - Air content in fresh concrete=4.3-4.8 %.
 - Dosages of AEA needed to be increased when PFA was added.
 - Combination with VR to achieve reasonable dosages.

- Curing conditions
 - Standard. +20°C. 28-90 days.
 - Increased temperature. +55°C. 28-42 days

Results – Knutsson (2010)
Results – Knutsson (2010)

Investigations of Lindvall (2012)

• Concrete compositions. \((w/c)_{eq} = 0.40-0.50\)
 – Portland cement (CEM I) mixed with PFA
 • No addition of PFA (reference).
 • 6-33 wt-% PFA of CEM I. \(k=0.4\).
 – Portland limestone cement (CEM II) mixed with PFA
 • No addition of PFA (reference).
 • 25wt-% PFA of CEM I. \(k=0.4\).
 – AEA used to mix in extra air.
 • Air content in fresh concrete=4.8-5.9 %.
 • Dosages of AEA needed to be increased when PFA was added.
 • Combination with VR to achieve reasonable dosages.

• Curing conditions
 – Standard. +20°C. 28 days.
 – Prolonged. +20°C. 56 days.
Results – Lindvall (2012)

![Graph showing the amount of PFA in wt-% of CEM I and RCM in 10^-12 m^2/s for different amounts of PFA and curing times.](image)

- **Equation**: $\alpha w = 0.45$
- **Legend**:
 - 28 days
 - 36 days

<table>
<thead>
<tr>
<th>Amount of PFA [wt-% of CEM I]</th>
<th>0%</th>
<th>6%</th>
<th>11%</th>
<th>18%</th>
<th>25%</th>
<th>33%</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 days</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36 days</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The graph represents the results of Lindvall (2012) on the durability aspects of fly ash and slag in concrete.

Results – Lindvall (2012)

![Bar chart showing the acc. amount of scaled material in kg/m² for different cycles of curing.](image)

- **28 days curing**
- **56 cycles**
- **112 cycles**

<table>
<thead>
<tr>
<th>CEM I</th>
<th>28 cycles</th>
<th>56 cycles</th>
<th>112 cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.20</td>
<td></td>
<td>0.45</td>
</tr>
<tr>
<td>0.055</td>
<td>0.25</td>
<td></td>
<td>0.50</td>
</tr>
<tr>
<td>0.06</td>
<td>0.30</td>
<td></td>
<td>0.55</td>
</tr>
<tr>
<td>0.065</td>
<td>0.35</td>
<td></td>
<td>0.60</td>
</tr>
</tbody>
</table>

Note: The bar chart shows the acc. amount of scaled material for different cycles of curing and compositions.
Conclusions – concrete with PFA

Concretes with additions of PFA (up to 33 wt-% of CEM I and $k=0.4$) have comparable properties as CEM I concretes.

- **Strength.** At 28 days equal, if $k=0.4$.
- **Frost resistance.** Very good, as long as the air pore system in the concrete is good. Extra air mixed in with AEA.
 - Higher dosage of AEA required when PFA is added.
 - Prolonged curing decreases frost resistance when PFA is added.
 - If $k=1.0$ frost resistance is decreased.
 - If CEM II is used the frost resistance is decreased.
- **Resistance against chloride ingress.**
 - Significantly improved compared to Portland cement concretes.
 - Prolonged curing increases resistance against chloride ingress.
 - If $k=1.0$ frost resistance is decreased (equal to CEM I concretes).
 - If CEM II is used the resistance against chloride ingress increases.
Recommendations – concrete with PFA

- Concretes with additions of PFA have similar properties compared to Portland cement concretes
 - Properties of PFA according to EN 450-1.
 - Additions of PFA according to SS 13 70 03.
- Allowed additions of PFA
 - The regulations in SS 13 70 03 are reasonable, but in some exposure classes they are too conservative.
 - The regulations in AMA Anläggning are considered far too conservative
 - Are counteracting the positive effects of additions of PFA.
 - Are proposed to be revised so they harmonize with the regulations SS 13 70 03.

Investigations of Correia (2012)

- Concrete compositions. \((w/c)_{eq}=0.45\)
 - Portland cement (CEM I) mixed with GGBS
 - No addition of GGBS (reference).
 - 25-100 wt-% GGBS of CEM I. \(k=0.6\).
 - AEA used to mix in extra air.
 - Air content in fresh concrete=4.4-5.5 %.
 - Dosages of AEA needed to be somewhat increased when GGBS was added.
- Curing conditions
 - Standard and prolonged. +20°C. 28 and 56 days.
 - Heat and prolonged. +55°C. 28 and 56 days.
Preliminary results – Correia (2012)

Thank you for the attention
Background agenda

- European request of alternative, “milder” testing procedure & criteria than the current
 - CEN/TS 12390-9:2006
 - ▶ CEN TC 51 (+104) WG 12 / TG 4 re-awaken
- Future cement and concrete design & application with “different” properties development rate
- Norwegian current regulations for non-NA-adopted cement types or k x [additions] containing concrete (Application : Buildings or Engineering structures) :
 - W/C-ratio = 0.45 (0.40) + min. 4 % Air void content
 - Approval testing with 3 % NaCl
 - Test duration 56 or 112 F-T cycles
 - No formal opening of non-saline testing
 - Scarce experience of non-saline testing or Field/Lab relation
Testing procedure(s)

Proposed "Market needs" adoption

ANNEX A: Alternative application

Alternative application may follow from specific objectives, such as but not limited to:

- Adoption of the testing method for concrete product testing, on samples with different geometry
- Investigation of concrete qualities with other age dependent properties development than those for which the testing methods was originally developed
- Adoption of the testing method for regional application of scaling acceptance limits, and in particular;
- Such adoption with differentiation of severity of exposure conditions
- Adoption of the basic principles of the testing method but for research on certain mechanistic phenomena
Proposed “CEN Market needs” adoption – Stage 1

ANNEX A: Alternative application

Alternative application may follow from specific objectives, such as but not limited to:

- Adoption of the testing method for concrete product testing, on samples with different geometry
- Investigation of concrete durability if the testing method was originally validated
- Acceptance limits – differentiation of severity
- Such adoption with or without (d)emonstration
- Adoptions may not be applicable, and in particular;
- Adoption of the basic principles of the testing method but for research on certain mechanistic phenomena

Adoptions Stage 1: Concerns

- other age dependent properties development
 - Deviation from standard age testing initiation:
 - Change in moisture history and level of carbonation may apply (Significance of which is explained)
- Acceptance limits – differentiation of severity
 - Test results acceptance limits are not normally (...) applied in testing procedures.
 - This point disappointedly escapes several of those using this CEN/TS. NA responsibility!
 - Guidance to be provided: Nos. of F-T cycles may deviate from 56 but should always be 14 or more. Implications on statistics.
Adoptions Stage 1: Concerns

- acceptance limits – differentiation of severity - Cont.
 - The temperature cycle shall not be changed! (request from many parties): Will significantly increase scatter!

![Graph]

Fig. 11. Heat flow (given as apparent heat capacity) as a function of temperature. Cement paste, w/c = 0.5 after 75 days of hydration at 35°C [31]

Geiker et al., 2008

Adoptions Stage 2: Concerns Lab/Field Relation

- XF 3: Nos. of F-T cycles must be defined
 - Nos. of F-T cycles must be defined?!
 - Definition of degree of saturation – in relation to field service conditions - prior to testing?
 - Slowly developing binders: Do consider realistic degree of hydration for the frost exposure “load”, including the influence of carbonation on the moisture exchange and F-T test results

![Logo]
A key issue for Testing Performance - Moisture history, exposure & properties

Independent of hydration development:

- Water storage during chemical shrinkage

Some of this w-filled volume would otherwise not be available to capillary suction – but possibly by F-T “pumping” under water.

Test series subjected to various pre-curing regimes:

- Standard Curing
- Modified Standard Curing
- Plastic Curing
- Intensive Drying

Test series subjected to various pre-curing regimes:

- Standard Curing
- Modified Standard Curing
- Plastic Curing
- Intensive Drying

Durability aspects of fly ash and slag in concrete
A key issue for Testing Performance
- Moisture history, exposure & properties

45-I-AE : w/c-ratio = 0.45 ; 4.5 % Air.
Resaturation tap water

<table>
<thead>
<tr>
<th>Step of Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sawing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rel. Weight Change [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
</tr>
</tbody>
</table>

"Lateral" exposure
Top surface exposure only
35-40 % of W

Weight gain during re-saturation vs. total weight loss prior to re-saturation.

Example : 1 : 45-I-AE ; w/c=0.45 ; 4.5 % Air.
Resaturation with Fresh Water.

<table>
<thead>
<tr>
<th>Weight Increase [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
</tr>
</tbody>
</table>

0.45
0.24
0.1

0,45
0,24
0,1

0.45
0.24
0.1

Plastic Curing
Mod. Stand. Curing
Intensive Drying
Standard Curing

Weight Loss [%]
A key issue for Testing Performance
- Moisture history, exposure & properties

- Weight gain during freeze-thaw test vs. total weight loss prior to re-saturation.

- Example: 1 : 45-I-AE : w/c=0.45 ; 4.5 % Air
- Resaturation with Water.

- Carbonation is considered positive to CEM I performance, implying that the plastic curing effect is attributed to the limited moisture exchange.
A key issue for Testing Performance
- Moisture history, exposure & properties

Scaling in 3% Salt (56 Cycles) vs. Weight Gain during Resaturation and Freeze-Thaw Test.

- Resaturation with Fresh Water
- Int. Drying
- Mod. Standard Curing
- Plastic Curing
- Standard Curing

1. **Weight Increase [%]**
 - 0
 - 1
 - 2
 - 3
 - 4
 - 5
 - 6
 - 7

2. **Scaling [kg/m²]**
 - 0
 - 0.5
 - 1
 - 1.5
 - 2
 - 2.5

- **Mixes**
 - Mix 1
 - Mix 2
 - Mix 3
 - Mix 4
 - Mix 5
 - Mix 6
 - Mix 7
 - Mix 8

- **Testing Conditions**
 - Standard Curing
 - Test in 3% NaCl
 - Test in Water

- **Noted Observations**
 - Loss from Sawing to Prep. (Not det.)
 - Loss from Preparation to Resaturation
 - Uptake During Resaturation
 - Uptake During Freeze-Thaw (Partly determ.)

Nordic workshop, Oslo, Norway, February 15-16, 2012
Degree of saturation in service?

Capillary Degree of Saturation
Mix 305 : Top Surface
(Febuary - April 1998)

<table>
<thead>
<tr>
<th>Distance from surface [cm]</th>
<th>Degree of saturation [Rel.Value]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

Conclusions

- Some modifications to the CEN/TS may be adopted now
- It essential to select the right measures
- The temperature cycle must NOT be changed
- Many countries miss the NA acceptance criteria (responsibility)
- The “bias” for XF 3 (non-saline) is not established
- The test methods are developed for “CEM I”
- The answer to prolonged pre-curing of slowly developing binders is not (automatically) prolonged water storage
- Research is needed to answer these requests
Conclusions & Questions

- Reduced moisture exchange prior to F-T reduces scaling
- Reducing water storage/"curing" and replacing with plastic curing reduces moisture exchange
- Still: In both cases, S_{cap} prior to F-T is close to 100%
- Long time (> 6h, 12h, 1d ?) water curing increases “$S_{\text{cap-closed}}$”?
- S_{cap} during testing is beyond that of field conditions:
 - Initial saturation is higher
 - F-T pumping causes increased saturation

L.o.i. ...

- ...
- ...
- ...
Low-heat concrete with fly-ash in massive infrastructures
Experiences from Norway on hardening phase crack sensitivity
Nordic Workshop, Oslo, February 15-16, 2012
Durability aspects of fly ash and slag in concrete
Øyvind Bjøntegaard
Norwegian Public Roads Administration (NPRA)
Tunnel and concrete division

Background
More and more underground infra-structures (urban areas)
- ground water
- sea water

The Bjørvika submerged tunnel system, Oslo
Background

Massive/semi-massive structures
- tend to develop through-cracks in the hardening phase due to the volume changes caused by hydration

Temperature is generally the main driving force, but autogenous shrinkage may also be significant
Background

Traditional strategy (used for a century): Use a binder with low hydration heat to reduce maximum temperature / stresses / cracking tendency

Heat is only one of many properties that determine the cracking tendency

- Thermal dilation
 - Temperature (heat, amount of binder, heat capacity)
 - Coefficient of thermal expansion

- Autogenous shrinkage

- Activation energy
- E-modulus
- Creep
- Tensile strength
The onset of «high volume fly-ash» concrete in Norway

For our traditional CEM I-based SV-30/SV-40 concretes quite extensive cracking is sadly often the case in massive structures.

Possible alternative concrete specifications were investigated by NPRA before the Bjørvika submerged tunnel project.

\- 2001-2004: NPRA’s pre-documentation
 - fly-ash, slag and CEM III + CEM I-ref
 - durability parameters, strength, crack-risk

\- 2005-2011: The Bjørvika submerged tunnel project

Specifications (some of them):
- 23-40% FA of binder (c + FA)
- 4-8% silica fume of c
- w/(c+2s+0.7FA) ≤ 0.45
- Full documentation of the early age properties for the chosen concrete mix(es)
- Temperature- and stress simulations; \(C_\sigma \leq 0.75 \)

\- Result:
 32-40% FA was used by the contractors, together with either cooling pipes or ice as part of mixing water
Simulations, cooling pipes

No cooling
With cooling pipes

Using ice / simulations with low fresh concrete temperature

The simulations were decisive for the amount of cooling pipes or ice

AF Gruppen / Multiconsult
Projects / structures

<table>
<thead>
<tr>
<th>Project</th>
<th>Typical wall dimensions</th>
<th>Total fly-ash content in concrete</th>
<th>Extra countermeasures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bjørvika: Havnelageret</td>
<td>1,0 m (var.)</td>
<td>40%</td>
<td>Cooling pipes</td>
</tr>
<tr>
<td>Bjørvika: Submerged tunnel</td>
<td>1,0 m</td>
<td>32%</td>
<td>Cooling pipes</td>
</tr>
<tr>
<td>Bjørvika: Sørenga</td>
<td>1,0 m</td>
<td>40% (low fresh concrete T)</td>
<td>Ice</td>
</tr>
<tr>
<td>NAV: Skansenlopet</td>
<td>0,8 m</td>
<td>32%</td>
<td>No</td>
</tr>
<tr>
<td>E6-øst Tr.heim: Møllenberg</td>
<td>1,0 m</td>
<td>?</td>
<td>Probably no</td>
</tr>
</tbody>
</table>

Experience

\- **1.0 m wall thickness**

 - 32% FA and «normal restraint» condition (from 1 side): Moderate cracking tendency ⇒ **COOLING PIPES**

 - 40% FA and «high restraint» condition (from 2 sides): Moderate cracking tendency ⇒ **ICE as part of mix water**

 No cracks when these extra countermeasures was used and worked as intended

\- **0.8 m wall thickness**

 - 32% FA and «normal restraint»: No / very low cracking tendency

\- Such good results not possible with our traditional concretes!
Experience

For the Bjørvika submerged tunnel:

Experiences with crack-control reported in 2010

(in Norwegian)

To generalize is difficult / risky

The degree of restraint varies in different structural configurations

In addition to heat, autogenous shrinkage and tensile strength are also VERY important

The cracking tendency vary over the year
 • Norwegian winter-conditions may be much worse than Norwegian summer-conditions
If a crack-free (massive) structure is strongly desired, the starting point for contractors will be that the concrete mix is the only «measure» to avoid cracking:
- the composition and amount of binder
- aggregate type and grading/\(D_{max}\)

Side-remark:
NS-EN 197-1 says a cement is «low-heat» if
\[Q_{car, 7 \text{ days}} \leq 270 \text{ kJ/kg} \]
(The term low-heat is misused today, according to this term!)

What is enough low-heat depends on the concrete mix/structure/situation

Data from previous and present lab.- and infrastructure projects
Variation in heat development during full-scale production

Data from the Bjørvika submerged tunnel project (32% FA)
1 m³ semi-ad. calorimeters

<table>
<thead>
<tr>
<th>Herdskartsforsk</th>
<th>Intern</th>
<th>Sement-batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hønsengren 19.01.2006</td>
<td>270 kJ/kg</td>
<td>1. doftsetting</td>
</tr>
<tr>
<td>NYNC 03.05.2006</td>
<td>261 kJ/kg</td>
<td>1. doftsetting</td>
</tr>
<tr>
<td>Hønsengren 28.05.2006</td>
<td>300 kJ/kg</td>
<td>2. doftsetting, sommeret 28.5, “færk”</td>
</tr>
<tr>
<td>Hønsengren 03.10.2006</td>
<td>330 kJ/kg</td>
<td>2. doftsetting, sommeret 28.5, “færk”</td>
</tr>
<tr>
<td>Hønsengren 13.11.2006</td>
<td>ca 290 kJ/kg</td>
<td>2. doftsetting, sommeret 28.5, “færk”</td>
</tr>
<tr>
<td>Hønsengren 30.11.2006</td>
<td>284 kJ/kg</td>
<td>2. doftsetting, sommeret 15-11, “færk”</td>
</tr>
<tr>
<td>Hønsengren 17.08.2007</td>
<td>288 kJ/kg</td>
<td>3. doftsetting, sommeret 2008, “færk”</td>
</tr>
</tbody>
</table>

Average: 288 kJ/kg

90% confidence interval: 257 – 319 kJ/kg

Autogenous shrinkage from isothermal and semi-adiabatic tests may be very different!

Ref: Upcoming COIN-report

The relevant test condition is semi-adiabatic!!
Data from previous and present lab.- and infrastructure projects

The "penalty" is generally most pronounced for compressive strength f_c.

NB! f_c is not used in crack-risk simulations.
Direct tensile strength should be used when calculating the «crack index»
- splitting strength may be as much as 25% higher and will under-estimate the «crack index» if used

Final remarks
- experience, crack sensitivity

- Heat (pr.kg) is systematically reduced with FA-dosage for a given concrete mix
 - crack-free massive structures have been possible to make!
 - the results would have been different with trad. spec.

- FA influences also the other properties
 - Autogenous shrinkage (reduced at iso.cond, semi-ad?)
 - Direct tensile strength (secure significant results, and results at relevant maturity)

- Without extra countermeasures 0.8-1.0 m thick wall structures seem to require a «truly low-heat» concrete with a FA-content at least in the range 35-40% FA to become crack-free year-around (without extra countermeasures)

- Stress-simulations require time, costs and special competence to be specified only in larger/special projects
Final remarks

- Special concrete specifications also in the future for special projects
- Adiabatic temperature rise for a given concrete mix is a more relevant quantity than the heat release pr. kg binder
Self-healing potential in blended cements

RILEM TC21 on Self Healing:
Self Healing Concrete is a term that is used for cement-based materials that repair themselves after the material or structure gets damaged due to some sort of deterioration mechanism.

Usually the damage concerned is (micro)cracks enhancing degradations.

Self-healing in Portland cement concrete

- **Hydration of unreacted cement**
 - Unreacted cement grains are encapsulated by a dense CSH-layer resulting in a slowed down continued hydration dominated by diffusion and water access.
 - When a crack comes through or nearby, the hydration of the un-reacted cement grain will be revitalized due to increased access of water and wholly or partly close the crack by hydration products.

- **Carbonation**
 - The binder contains a large amount of calcium hydroxide throughout. A crack will speed up the transport of CO$_2$ and speed up the carbonation process along the surface of the crack;
 - $\text{Ca(OH)}_2 (s) + \text{CO}_2 = \text{CaCO}_3 (s) + \text{H}_2\text{O}$
 - The volume increase of solid material in the above process is +12 vol%
 - CSH will also carbonate resulting in CSH with lower C/S and CaCO$_3$
Self-healing ability of concrete based on blended cements

- **Two decreasing effects: dilution and pozzolanic reaction:**

 1. The **dilution** effect of cement resulting in less calcium hydroxide produced per volume unit of concrete
 2. The **pozzolanic** reaction of the supplementary cementing materials consuming calcium hydroxide and also resulting in less calcium hydroxide per unit volume

- Blast furnace slag is "latent hydraulic" and is believed not to consume much calcium hydroxide (if any) → 1st effect
- Fly ash is "pozzolanic" and consumes calcium hydroxide → 1st and 2nd effect

Unreacted cement by limited water access

1. Self-desiccation by low water-to-binder ratio and fast supplementary cementing materials (fly ash too slow to promote self-desiccation?)
2. Early drying

Self-desiccation delaying hydration

Contact with sea water will improve self-healing of concrete

- Contains magnesium (1,350 ppm Mg^{2+}) that will precipitate as Brucite, Mg(CH_2)_2
- Saturated with calcium carbonate that will grow as Aragonite on concrete substrate
- Contains sulphates (2,655 ppm) that may form AFt/AFm with calcium aluminate hydrates
Contact with sea water can improve self-healing of concrete

- Supplementary cementing materials containing aluminate produce much more calcium aluminate hydrates than Portland cement.
- Calcium carbonate can form calcium hemi- and mono-carboaluminate hydrates.
- Sea water contains much more chlorides (1.9%) than the other species, so chlorides can form Kuzel's salt ($\text{Ca}_3\text{Al}_2\text{O}_6 \cdot 0.5\text{CaSO}_4 \cdot 0.5\text{CaCl}_2 \cdot 10\text{H}_2\text{O}$) or Friedel's salt ($\text{Ca}_3\text{Al}_2\text{O}_6 \cdot \text{CaCl}_2 \cdot 10\text{H}_2\text{O}$).

SCM and carbonation

- Not only CH carbonate but also CSH.
- SCMs results in CSH with lower overall C/S ratio.
- Low C/S type CSH will be less prone to carbonation in a crack.
- However, alumina containing SCMs will form calcium aluminate hydrates.
- How will they interact with carbonation?
- First one have to form calcium carbonate from CH and CSH.
- And then as a secondary reaction voluminous calcium carboaluminate hydrates may form.
Calcium carbonate reacting with AFm to calcium mono-carboaluminate hydrate and AFt:

- \[2\text{CO}_2 + 3\text{C}_3\text{ASH}_2 + 18\text{H} = 2\text{C}_4\text{ACH}_{11} + \text{C}_6\text{AS}_3\text{H}_{32} \]
- \(m = 1.00 \text{ g} \quad 9.33 \quad 1.62 \quad 5.68 \quad 6.27 \)
- \(M = 100.09 \text{ g/mol} \quad 622.58 \quad 18.02 \quad 568.50 \quad 1255.26 \)
- \(n = 9.99 \text{ mmol} \quad 14.99 \quad 89.91 \quad 9.99 \quad 5.00 \)
- \(\rho = 2.67 \text{ g/ml} \quad 2.02 \quad 0.998 \quad 2.17 \quad 1.78 \)
- \(V = 0.375 \text{ ml} \quad 4.619 \quad 1.623 \quad 2.618 \quad 3.522 \)
- The total increase in volume of solids can be calculated to
 \((2.618-(0.375+1.500))·100\text{vol}%=23\text{ vol}\% \)
- About double solid volume increase compared to carbonation of calcium hydroxide.

Reaction of calcium carbonate with calcium aluminate hexahydrate to calcium mono-carboaluminate hydrate

- Calcium aluminate hexahydrate could be stabilized with alumina containing SCMs
- \[\text{CC} + \text{C}_6\text{AH}_6 + 5\text{H} = \text{C}_4\text{ACH}_{11} \]
- \(m = 1.00 \text{ g} \quad 3.78 \quad 0.90 \quad 5.68 \)
- \(M = 100.09 \text{ g/mol} \quad 378.29 \quad 18.02 \quad 568.50 \)
- \(n = 9.99 \text{ mmol} \quad 9.99 \quad 49.95 \quad 9.99 \)
- \(\rho = 2.67 \text{ g/ml} \quad 2.52 \quad 0.998 \quad 2.17 \)
- \(V = 0.375 \text{ ml} \quad 1.500 \quad 0.902 \quad 2.618 \)
- The total increase in volume of solids is then
 \((2.618-(0.375+1.500))·100\text{vol}%(0.375+1.500)=40\text{ vol}\% \)
Increasing self-healing potential of concrete by

- Addition of micro, or even nano, "packages" that will be "activated" by cracks
- They can contain
 1. Epoxy resin
 2. Polyurethane
 3. Water glass
 4. Urea and bacteria using urease to form carbonate (2 separate packages)
 5. Calcium lactate + bacteria; \(\text{Ca} \left(\text{C}_3\text{H}_5\text{O}_2\right)_2 + 7\text{O}_2 = \text{CaCO}_3 + 5\text{CO}_2 + 5\text{H}_2\text{O} \)

- My view; only 1 package of urea required as the following reaction will happen without bacteria; \(\text{O=C(NH}_2\text{)}_2 + \text{Ca(OH)}_2 = \text{CaCO}_3 + 2\text{NH}_3 \)
- Involved in writing an EU-proposal called "INFRAHEAL" for the 2nd stage

How to measure the self-healing potential????

- Induce cracks
- Measure self-healing by
 1. Re-gaining the stress at the point of formation of the first crack
 2. Re-gaining ultra-sound velocity
 3. Re-gaining dynamic E-modulus?
 4. Re-gaining permeability/diffusivity resistance
 5. Etc
Summary effect of blended cement on self-healing

- The dilution of cement ↓
- The pozzolanic activity decreasing CH ↓
- Self-desiccation by low w/b and fast SCM ↑
- Pozzolanic reaction producing calcium aluminate hydrates ↑
- Contact with sea water ↑
Thirty Five Years Experience with Slag Cement Concrete in Canada

R. DOUG HOOTON
UNIVERSITY OF TORONTO
DEPARTMENT OF CIVIL ENGINEERING

Slag in Canada

- Canada’s steel industry is located in Ontario.
- Lafarge opened the first granulated slag grinding plant in 1976 near Hamilton Ontario.
- Within a few years, other cement companies started buying slag granules and separately grinding them at cement plants. All major cement suppliers in Ontario have slag available.
- Since ~1982, almost all concrete in Southern Ontario (ie ~10 Million people from Detroit to Toronto to Ottawa). Silica fume is also used for high strength and durability—and always together with slag.
- Some slag is shipped from US into Eastern Canada and into Vancouver.
Other SCMs in Canada

- Fly ash was used in Ontario from 1950s to 2008 but all coal-fired power plants will be closed by 2014.
- Fly Ash is still used in East Coast of Canada and in Western Canada
- Silica Fume production is largely in Quebec and in US near Niagara Falls. Silica fume is readily available from Ontario to the East Coast, and in the Vancouver area in the West.

Typical Slag Use in Different Applications

- All slag is added separately at concrete plants.
- 25% slag replacement of cement is used in almost all concrete, including high-strength and high-durability concretes containing silica fume.
- For sulfate resistance and ASR mitigation, 35-60% slag is used with high-C3A portland cements instead of sulfate resistant or low-alkali portland cements.
- For mass concrete, 50-80% slag has been used with high-C3A cements instead of low-heat cement.
- 90% slag binders have been used in cemented paste mine backfills.
CSA Portland Limestone Cement (15% limestone)
Demo Project: PC+25% Slag vs PLC+25% Slag

PLC had 11.5% limestone

Equal Properties:
Strength Development (35MPa @ 28days)
Drying Shrinkage (<0.04% at 28d)
Coulombs (<1500 at 56 days)
Freeze/Thaw Scaling Resistance

<table>
<thead>
<tr>
<th>2009 Barrier Wall</th>
<th>PC +25% SLAG</th>
<th>PLC + 25% SLAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shrinkage (28d)</td>
<td>0.038%</td>
<td>0.038%</td>
</tr>
<tr>
<td>Strength (MPa)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9.5</td>
<td>10.3</td>
</tr>
<tr>
<td>3</td>
<td>19.3</td>
<td>19.4</td>
</tr>
<tr>
<td>7</td>
<td>25.6</td>
<td>26.8</td>
</tr>
<tr>
<td>28</td>
<td>36.9</td>
<td>37.9</td>
</tr>
<tr>
<td>56</td>
<td>38.9</td>
<td>38.0</td>
</tr>
<tr>
<td>91</td>
<td>40.7</td>
<td>40.2</td>
</tr>
<tr>
<td>Freeze/Thaw Durability</td>
<td>94%</td>
<td>94%</td>
</tr>
<tr>
<td>MTO LS-412 Salt Scaling</td>
<td>0.24 kg/m²</td>
<td>0.24 kg/m²</td>
</tr>
<tr>
<td>RCP (Coulombs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28 days</td>
<td>2070</td>
<td>1490</td>
</tr>
<tr>
<td>56 days</td>
<td>1930</td>
<td>1340</td>
</tr>
</tbody>
</table>
Strengths of Air-entrained Concretes cured at 23 °C with limestone and SCMs

<table>
<thead>
<tr>
<th>Mix Identification (all 400 kg/m³ mixes)</th>
<th>% clinker in binder</th>
<th>w/cm</th>
<th>Compressive Strength (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>7 day</td>
</tr>
<tr>
<td>GU Cement Control</td>
<td>90*</td>
<td>0.40</td>
<td>39.3</td>
</tr>
<tr>
<td>GU + 40% Slag</td>
<td>53</td>
<td>0.40</td>
<td>32.8</td>
</tr>
<tr>
<td>GUL9 + 40% Slag</td>
<td>50</td>
<td>0.40</td>
<td>36.1</td>
</tr>
<tr>
<td>GUL9 + 50% Slag</td>
<td>41</td>
<td>0.40</td>
<td>34.6</td>
</tr>
<tr>
<td>GUL15 + 40% Slag</td>
<td>46</td>
<td>0.40</td>
<td>37.1</td>
</tr>
<tr>
<td>GUL15 + 50% Slag</td>
<td>38</td>
<td>0.40</td>
<td>36.3</td>
</tr>
<tr>
<td>GUL15 + 6% Silica Fume + 25% Slag</td>
<td>53</td>
<td>0.40</td>
<td>46.0</td>
</tr>
</tbody>
</table>

* 3.5% limestone and 7% gypsum

U. of Toronto Field site data

Permeability Index of Air-entrained Concretes cured at 23 °C with limestone and SCMs

<table>
<thead>
<tr>
<th>Mix Identification (all 400 kg/m³ mixes)</th>
<th>% clinker in binder</th>
<th>w/cm</th>
<th>Rapid Chloride Permeability ASTM C1202 (Coulombs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>28 day</td>
</tr>
<tr>
<td>GU Cement Control</td>
<td>90</td>
<td>0.40</td>
<td>2384</td>
</tr>
<tr>
<td>GU + 40% Slag</td>
<td>53</td>
<td>0.40</td>
<td>800</td>
</tr>
<tr>
<td>PLC 9% + 40% Slag</td>
<td>50</td>
<td>0.40</td>
<td>867</td>
</tr>
<tr>
<td>PLC 9% + 50% Slag</td>
<td>41</td>
<td>0.40</td>
<td>625</td>
</tr>
<tr>
<td>PLC 15% + 40% Slag</td>
<td>46</td>
<td>0.40</td>
<td>749</td>
</tr>
<tr>
<td>PLC 15% + 50% Slag</td>
<td>38</td>
<td>0.40</td>
<td>525</td>
</tr>
<tr>
<td>PLC 15% + 6% Silica Fume + 25% Slag</td>
<td>53</td>
<td>0.40</td>
<td>357</td>
</tr>
</tbody>
</table>

CSA A23.1 limit is 1500 coulombs @ 56d for C-1 Exposure
Durable Concrete

- Durable concrete can be made for most aggressive exposures provided appropriate materials, mix designs, and construction practices are followed.
- **Slag cement will improve the durability of concrete**, but as with any cementing material, it cannot guarantee durability if it is not used in good quality concrete or if concrete is poorly placed and cured.
- Durable concrete will have a longer service life and therefore be more sustainable.

Effect of Slag on Permeability and Chloride Penetration Resistance

Look Mom, No Slag!
Effect of Slag on Concrete (=[W] and w/cm)

<table>
<thead>
<tr>
<th>Slag %</th>
<th>Water</th>
<th>W/CM</th>
<th>91-day Strength (MPa (psi))</th>
<th>RCPT (coulombs)</th>
<th>Permeability H$_2$O 10^{-13} m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>200</td>
<td>0.45</td>
<td>35.8 (5190)</td>
<td>5200</td>
<td>10.1 5.1x 4.4x</td>
</tr>
<tr>
<td>25</td>
<td>200</td>
<td>0.45</td>
<td>42.7 (6190)</td>
<td>2450</td>
<td>5.4</td>
</tr>
<tr>
<td>50</td>
<td>200</td>
<td>0.45</td>
<td>42.8 (6200)</td>
<td>1020</td>
<td>2.3</td>
</tr>
</tbody>
</table>

R. Bin Ahmad & Hooton, 1991

Picton Concrete Pavements at 2 years: (ASTM C1556 Results)

- Chloride concentration vs. depth from surface (mm)
 - Portland Cement Mix
 - 35% Slag Mix
 - 35% Slag + 5% SF

Bleszynski, Hooton, Thomas, 2001
EFFECTS OF SLAG ON CHLORIDE DIFFUSION

CSA A23.1 Class C-1 Concretes: w/cm = 0.40

(Tests started at 56 days of age, 5 days moist cured)

<table>
<thead>
<tr>
<th></th>
<th>120 Day Ponding Test</th>
<th>Migration Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 10 PC</td>
<td>19.0×10^{-12} m²/s</td>
<td>7.6×10^{-12} m²/s</td>
</tr>
<tr>
<td>25% Slag</td>
<td>5.0×10^{-12} m²/s</td>
<td>2.5×10^{-12} m²/s</td>
</tr>
</tbody>
</table>

* At 56 days of age 5 M NaCl Ponded at 40°C for 120 days.

McGrath and Hooton, 1997

Effect of Slag on Chloride Binding

- Optimum GGBFS replacement level.
- Beside alumina content, C/A, C/S have influence.

Zibara 2001 (also CCR 2012)
Age-Dependant Changes in Chloride Diffusion Values

- In general, chloride diffusion coefficients will reduce as concrete matures.
- The magnitude of that change depends on the cementing materials and the initial curing achieved (slag and fly ash are very effective).
- This time-dependent reduction has a huge impact on service-life predictions and is recognized in Life-365 calculations.

Chloride Penetration Resistance - RCPT

Stanish, Hooton and Thomas, 2000
Effect of Age on Coulombs

Early-Age Water Permeability Results
(calculated on inflow up to 7 days)

Nokken and Hooton, 2003
Slag-Silica Fume Ternary Mixes

- In Ontario, in almost every case where silica fume has been used since 1986, slag cement has also been used at 25-35% levels.
- Slag reduces stickiness and improves ease of finishing.
- Slag reduces the HRWR dose required.
- Slag reduces early heat of hydration.
- Slag continues to improve strength and chloride resistance beyond 28 days.

Bridge Decks at Toronto Airport

- In 1999, 4 bridge decks were placed using Type GUb-8SF blended cement + 25% Slag and 0.40 w/cm using the MTO High Performance Concrete Spec. but at 35MPa
- High corrosion resistance was required (<1000 coulombs).
- The concretes were placed in cold weather in 16h continuous placements of 1200m³.
- Since then 70 bridge structures and terminal decks at the airport have used similar concrete mixtures.
First GTAA Airport Bridge Deck, 1999

- Slump: 170 ± 40mm
- Air: 6.9%, Spacing: 0.202mm
- Strength: 50.5MPa
- std.dev.= 3.5MPa
- RCPT: 590 coulombs
- Bulk Diffusion (D_a) = \(2.5 \times 10^{-12} \text{ m}^2/\text{s}\)

TTC Fairview Parking Deck

- Multilevel level parking deck exposed to de-icing salts and freezing.
- 395kg/m³: Type GUb-8SF cement with 30% slag replacement.
- W/CM = 0.37
- 45 MPa design, air-entrained.
- RCPT: **185 coulombs** (on cores at 60 days)
- Bulk Diffusion (D_a): \(2.5 \times 10^{-12} \text{ m}^2/\text{s}\)
- Fog misting with car power washer helped prevent plastic cracks even on a sunny, 30°C+ day with a wind. Evaporation retarder also worked well.
Toronto Airport Parking Garage (8800 cars cap’y.)

- PT Decks
- Min. CM = 320 kg/m³
- 25% Slag, 0.40 W/CM
- 35 MPa (+10 L/m³ DCI on some decks)

Freeze/Thaw Resistance

Regardless of the cementing materials and admixtures used, concrete will be durable even if saturated when:
1. It is adequately air-entrained.
2. The aggregates are frost-resistant.
3. Adequate strength is developed before exposure to the first freeze (≥ 5 MPa) and cyclic freezing (≥ 20 MPa).
1994 Stoney Creek Slag Test Pavements
See Boyd & Hooton 2008 ASCE
June 1994 Field Trials

Six concrete mixtures were cast into pavement slabs which receive truck traffic and de-icing applications at Lafarge’s Slag Plant in Stoney Creek.

Variables:
- Cementing materials
- Curing: curing compound vs 4 days wet burlap and plastic
- Finishing time - early vs normal

Contacts:
- CM = 355 kg/m²
- w/cm = 0.42

Tests:
- Field Performance
- Standard MTO LS412 Scaling Test at 28 days
- LS412 tests after 4 months field exposure
- Temperature monitoring of concrete slabs during winter

Standard Lab Scaling tends to show slag and fly ash concretes performing poorly

Lab. Test Slabs Were Finished and Cured The Same As The Pavements
Field Trial Scaling Results

Laboratory Specimens

<table>
<thead>
<tr>
<th>Mix Composition</th>
<th>Cumulative Mass Loss After 50 Cycles (kg/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50% S</td>
<td>2.00</td>
</tr>
<tr>
<td>35% S</td>
<td>1.50</td>
</tr>
<tr>
<td>25% S</td>
<td>1.00</td>
</tr>
<tr>
<td>10% FA</td>
<td>0.50</td>
</tr>
<tr>
<td>15% FA</td>
<td>0.00</td>
</tr>
<tr>
<td>100% OPC</td>
<td>2.00</td>
</tr>
<tr>
<td>100% OPC</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Testing Laboratory
- MTO
- Lafarge

Nordic workshop, Oslo, Norway, February 15-16, 2012

Lab Test Slabs Left On Site for 4 Months Then Tested

Stoney Creek 1994
After 18 years, no further scaling has occurred.
State DOT Specifications

Deicer Scaling Resistance of Concrete Pavements, Bridge Decks, and Other Structures Containing Slag Cement

Performed by Iowa State University under Scott Schlorholtz with R. D. Hooton as co-PI.

- To document the field performance of existing concrete structures containing slag cement that have been exposed to cyclical freeze-thaw cycles in the presence of deicing chemicals
Delaware Route 1 SB
10 year old slag pavements, 35 and 50% slag

No scaling observed

Michigan 5 year old multilane, multispam
bridge decks with 30% slag

No scaling observed
Field Scaling Noted

Any field scaling noted to date appears to be due to:
A) isolated areas where deep tamping of surface suggests the that the finishing was done too early,
B) where inadequate air-entrainment was attained

Also, Maryland DOT experience is that they never have scaling problems with their “A list” contractors.

Alkali-Silica Reaction (ASR)

ASR - a chemical reaction between the alkalis in portland cement and certain siliceous aggregates.

Reactive silica in aggregates is attacked when exposed to the high-alkaline pore solution.

Concrete cracks and swells, closing joints.
Durability aspects of fly ash and slag in concrete

MTO Site
Kingston, Ont.

20-year Pavement Slab Expansions

- High-alkali PC
- 18% Class F Fly Ash
- 25% Slag

- Low-alkali PC
- 3.8%SF + 25%Slag
- 50% Slag
Compressive Strengths (MPa) and Alkali Loading

<table>
<thead>
<tr>
<th>Mix</th>
<th>50% Slag</th>
<th>18% F-Ash</th>
<th>25% Slag</th>
<th>25% slag +3.8%SF</th>
<th>LAPC</th>
<th>HAPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/cm</td>
<td>0.38</td>
<td>0.37</td>
<td>0.39</td>
<td>0.34</td>
<td>0.40</td>
<td>0.39</td>
</tr>
<tr>
<td>28 d</td>
<td>40.0</td>
<td>39.0</td>
<td>41.8</td>
<td>47.9</td>
<td>39.6</td>
<td>35.6</td>
</tr>
<tr>
<td>82 d</td>
<td>44.9</td>
<td>50.0</td>
<td>42.7</td>
<td>52.8</td>
<td>46.2</td>
<td>44.3</td>
</tr>
<tr>
<td>1y</td>
<td>49.7</td>
<td>52.4</td>
<td>50.9</td>
<td>63.2</td>
<td>54.9</td>
<td>49.2</td>
</tr>
<tr>
<td>7.25y</td>
<td>58.5</td>
<td>60.4</td>
<td>59.0</td>
<td>61.8</td>
<td>62.2</td>
<td>57.9</td>
</tr>
<tr>
<td>Alkali Loading (kg/m³)</td>
<td>1.64</td>
<td>2.67</td>
<td>2.46</td>
<td>2.34</td>
<td>1.91</td>
<td>3.28</td>
</tr>
</tbody>
</table>
Avg. # F/T cycles over 5 winters (from 1992/93 to 1996/97) and average temp. (January and July) at the site

<table>
<thead>
<tr>
<th>Assumed Freezing Temp.</th>
<th>Average Number of Freezing Cycles</th>
<th>Average Temperatures</th>
<th>January</th>
<th>July</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0°C (32°F)</td>
<td>-2°C (28°F)</td>
<td>-3°C (27°F)</td>
<td>-5°C (23°F)</td>
</tr>
<tr>
<td>Air (150 mm (6 in.) above slab)</td>
<td>96</td>
<td>62</td>
<td>51</td>
<td>39</td>
</tr>
<tr>
<td>Beam (50 mm (2 in.) depth)</td>
<td>65</td>
<td>46</td>
<td>42</td>
<td>30</td>
</tr>
<tr>
<td>Beam (300 mm (12 in.) depth)</td>
<td>29</td>
<td>16</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>Slab (50 mm (2 in.) depth)</td>
<td>47</td>
<td>26</td>
<td>25</td>
<td>12</td>
</tr>
<tr>
<td>Slab (100 mm (4 in.) depth)</td>
<td>36</td>
<td>14</td>
<td>10</td>
<td>4</td>
</tr>
</tbody>
</table>

Nokken, Hooton & Rogers ~2003

Chloride Penetration into slabs

- Snow was cleared and the slabs were de-iced for the first 5 years Profiles were measured after 12 years.
- The average depth where chlorides had penetrated to a concentration of 0.05% by mass of concrete was 16.5mm (50% Slag), 19.5mm (18% FA), 17mm (25% Slag), 16mm (25% Slag+3.8% SF), 31.5mm (LAPC), and 29mm (HAPC).
- The Portland cement mixtures allowed chlorides to penetrate 50 to 100% further than the mixtures with SCMs.
Chloride Bulk Diffusion (ASTM C1556) and ASTM C1202 data on 14-year cores from Slabs

<table>
<thead>
<tr>
<th>Concrete Binder</th>
<th>ASTM C1556 (42 Days Ponding)</th>
<th>ASTM C1202</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cs (mass %)</td>
<td>Da (10-12 m2/s)</td>
</tr>
<tr>
<td>50% Slag</td>
<td>0.673</td>
<td>2.44</td>
</tr>
<tr>
<td></td>
<td>0.622</td>
<td>2.24</td>
</tr>
<tr>
<td>18% Fly Ash</td>
<td>0.866</td>
<td>2.89</td>
</tr>
<tr>
<td></td>
<td>0.687</td>
<td>7.5</td>
</tr>
<tr>
<td>25% Slag</td>
<td>0.977</td>
<td>3.94</td>
</tr>
<tr>
<td></td>
<td>0.774</td>
<td>5.4</td>
</tr>
<tr>
<td>25% Slag + 3.8% SF</td>
<td>0.728</td>
<td>1.74</td>
</tr>
<tr>
<td></td>
<td>0.674</td>
<td>1.67</td>
</tr>
<tr>
<td>Low Alkali Cement</td>
<td>0.734</td>
<td>14.9</td>
</tr>
<tr>
<td></td>
<td>0.651</td>
<td>18.3</td>
</tr>
<tr>
<td>High Alkali Cement</td>
<td>0.819</td>
<td>8.67</td>
</tr>
<tr>
<td></td>
<td>0.737</td>
<td>8.75</td>
</tr>
</tbody>
</table>

NE corner Slab: 18% fly ash
NE corner slab: 4% SF, 25% slag

Difficult to see cracking even at 0.12% expansion

NE corner Slab: 100% HAPC
NE corner slab: 50% slag

Slight de-icer salt scaling

Close up of Slab 1: 50% slag
Some Pop offs over some Coarse Aggregates but no scaling of mortar
Steephill Falls Ontario: Spillway, Intake, and Powerhouse
ASR Aggregate and 50% Slag Cement, 1988

Steephill Falls Spillway on Magpie River, Ontario

• 50% Slag Concrete made with ASR aggregate in 1988 is in excellent condition after 20 years.
• There was also no petrographic evidence of any ASR activity after 10 years.
• Note that Concrete was placed during the winter.
Magpie River Bridge on Highway 17, Cracked due to ASR
Built in 1989 with Portland cement and same aggregates as dam

Map Cracking after 10 years

Sulfate Resistance

Bridge columns in North Dakota in sulfate soils
Sulfate Resistance

- 50% Slag has been allowed by Ontario Government agencies instead of Type V cement since 1983 for severe sulfate exposure.
- Silica fume can also work but the amount required exceeds the level typical in CSA Blended SF cements.
- Ternary SF Blended Cements +25% slag systems are effective.

ASTM C 1012- Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution

1. Aggregate/cementitious material = 2.75 & W/CM = 0.485
2. Mortars stored in limewater until a strength of 2850psi (20 MPa) is attained
3. Mortar bars (25 x 25 x 250 mm) then immersed in a 5% solution of sodium sulfate for 6 months or 1 year ~ length change monitored during storage

5%-Na₂SO₄ solution
Changed periodically
ASTM C989 Sulfate Expansion Limits
(ASTM C1012 Test)

- Appendix (Non-mandatory)
 - Moderate exposure = 0.10% max. at 6 months
 - Severe exposure = 0.05% max. at 6 months

- Similar limits are in ASTM C 595 and C 1157 Specifications for Blended Cements

The ACI 318-08 Code uses the above limits plus 0.10% @ 18m for Very Severe exposure to allow combinations of cementitious materials to be used.

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Sol. Sulfate in Soil (%SO₄₂⁻)</th>
<th>Sulfate in Water (%SO₄₂⁻)</th>
<th>Cement</th>
<th>W/CM (maximum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild Class 0</td>
<td>0.00 – 0.10</td>
<td>0 – 150</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Moderate Class 1</td>
<td>>0.10 – 0.20</td>
<td>150 – 1500</td>
<td>Type II or Equiv.¹</td>
<td>0.50</td>
</tr>
<tr>
<td>Severe Class 2</td>
<td>0.20 – <2.00</td>
<td>1500 – 10,000</td>
<td>Type V or Equiv.²</td>
<td>0.45</td>
</tr>
<tr>
<td>Very severe Class 3</td>
<td>Over 2.00</td>
<td>Over 10,000</td>
<td>Type V+ or HS + pozzolan or slag³</td>
<td>0.40</td>
</tr>
</tbody>
</table>

¹ Blend of any PC (C₃A> 7%) and slag or pozzolan tested by C 1012 at 12m to give equivalent sulfate resistance (<0.10%@12m); Type I(S(MS); Type I(P(MS); or Type MS.
² Blend of any PC (C₃A> 7%) and slag or pozzolan tested by C 1012 to give equivalent sulfate resistance (<0.05% @6m and <0.10%@12m); or C 1157 Type HS.
³ or C 1157 Type HS +a pozzolan or slag tested by C 1012 to give < 0.10% @ 18m.
Effect of Slag on Sulfate Resistance

- **ASTM C 1012**
- Control (no slag): Type I PC with 11.8% C₃A
- 40% Slag
- 50% Slag
- 65% Slag

Effect of Slag Al₂O₃ on Sulfate Resistance

- **ASTM C 1012**
- Control (no slag): Type I PC with 12.2% C₃A
- 50% Slag 11.4% Al₂O₃
- 50% Slag 9.1% Al₂O₃

5%-Na₂SO₄ solution
Changed periodically

Hooton & Emery, 1990
Concrete: Effect of C₃A in Portland Cement
w/c =0.50, 21 years in 50,000 ppm MgSO₄

12.3 % C₃A
7.1 % C₃A
3.5 % C₃A
(Saw Cut cylinders on right side)
Hooton and Emery

Type I, 12.3% C₃A Cement + 72% Slag
w/c =0.50, MgSO₄ for 24 years

Nordic workshop, Oslo, Norway, February 15-16, 2012
50% Slag used in Bridge foundations for Sulfate Resistance, Hamilton, Ontario, 1983

50% Slag allowed in Ontario for Sewer Pipe and Culverts since 1983
Some additional points

- In a severe sulfate environment, use of Type V cement or slag cement is no guarantee against sulfate attack.
- Regardless of what cementing materials are used, obtaining low permeability concrete is of prime importance.
- This is achieved through low W, low W/CM, and good curing. SCM's such as slag will also reduce permeability.
Drying Shrinkage

7 Days Moist Curing, then dried at 50% rh

0.38 W/CM, 350 kg/m³ CM, 20 mm Agg.

<table>
<thead>
<tr>
<th>Cement Type</th>
<th>7 days</th>
<th>28 days</th>
<th>56 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>0.026%</td>
<td>0.046%</td>
<td>0.052%</td>
</tr>
<tr>
<td>Type I + 25% Slag</td>
<td>0.020%</td>
<td>0.036%</td>
<td>0.042%</td>
</tr>
</tbody>
</table>

D. Wannamaker, 1996

Drying Shrinkage with ASTM Type I (CSA GU) Cement

7 Days Moist Curing, then dried at 50% rh

0.55 W/CM, 300 kg/m³ CM, 20 mm Agg.

<table>
<thead>
<tr>
<th>Cement Type</th>
<th>7 days</th>
<th>28 days</th>
<th>56 days</th>
<th>91 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>0.022%</td>
<td>0.032%</td>
<td>0.039%</td>
<td>0.044%</td>
</tr>
<tr>
<td>Type I + 25% Slag</td>
<td>0.012%</td>
<td>0.027%</td>
<td>0.035%</td>
<td>0.041%</td>
</tr>
<tr>
<td>Type I + 50% Slag</td>
<td>0.011%</td>
<td>0.018%</td>
<td>0.032%</td>
<td>0.035%</td>
</tr>
</tbody>
</table>

Hooton, 2006
<table>
<thead>
<tr>
<th>Summary: Experience with Slag Durability</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Slag reduces permeability and chloride penetration of concrete.</td>
</tr>
<tr>
<td>• Slag reduces rate of steel corrosion in concrete.</td>
</tr>
<tr>
<td>• Slag can eliminate ASR expansion / damage.</td>
</tr>
<tr>
<td>• 35-50% Slag can provide Type V performance or better for sulfate resistance when used with Type I or II cements (Slags with Al₂O₃ >12 % may require higher % slag).</td>
</tr>
<tr>
<td>• At replacement levels of 40 + %, there is increased risk of de-icer salt scaling on pavements, sidewalks and curbs, especially with poor workmanship and curing.</td>
</tr>
<tr>
<td>• Drying shrinkage is less than or equal to PC mixes.</td>
</tr>
</tbody>
</table>
Ternary blends – experiences from laboratory and practice

Per Fidjestol
Elkem AS Silicon Materials

Content

- Study on HAC at CCCC Wuhan Harbour Engineering Design and Research Institute Ltd.
- Some experiences with other SCM’s
 - RHA
 - Milled Glass
 - Micronized Perlite
 - Superclassified fly ash
Wuhan – Background and goal of investigation

- In China, microsilica was (erroneously) blamed for some cracking issues.
 - This was exasperated by the assertion of a certain Mr. Burrows who had read articles on cracking and made that the basis of a monograph. This had been translated to Chinese and published by Prof. Qin Weizu (prof. "Crack") at Tsinghua, a very senior professor. Opinions by Burrows were wrong due to inadequate information collection, but prof. Qin's elevated position in China made it very difficult to argue.
- The purpose of the work in Wuhan was to study crack risk for typical concretes and relate that risk to strength and chloride resistance.

China – Cracking Issue

Study on Cracking Sensitivity of Concretes with Silica Fume

CCCC Wuhan Harbour Engineering Design and Research Institute Ltd.
Wuhan – concrete mixes

<table>
<thead>
<tr>
<th>NO.</th>
<th>Code</th>
<th>C:F:S:M</th>
<th>W/B</th>
<th>Mixing proportion</th>
<th>FA%</th>
<th>MS%</th>
<th>SL%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0M0F0S-34</td>
<td>100:0:0:0</td>
<td>0.34</td>
<td>Ref concrete 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>4M0F0S-34</td>
<td>96:0:0:4</td>
<td>0.34</td>
<td>P II+4%M S</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>8M0F0S-38</td>
<td>92:0:0:8</td>
<td>0.38</td>
<td>P II+8%M S</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>12M0F0S-42</td>
<td>88:0:0:12</td>
<td>0.42</td>
<td>P II+12%M S</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>4M25F0S-34</td>
<td>71:25:0:4</td>
<td>0.34</td>
<td>P II+25%M FA</td>
<td>25</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>4M0F0S-34</td>
<td>96:0:0:4</td>
<td>0.38</td>
<td>P II+4%M FA</td>
<td>25</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0M25F0S-38</td>
<td>75:25:0:0</td>
<td>0.38</td>
<td>P II+25%M FA</td>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>8M25F0S-42</td>
<td>67:25:0:8</td>
<td>0.42</td>
<td>P II+8%M FA+25%M FA</td>
<td>25</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0M2SF0S-38</td>
<td>45:25:30:0</td>
<td>0.34</td>
<td>P II+25%M FA+30%GGBS</td>
<td>25</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>0M0F0S-38</td>
<td>100:0:0:0</td>
<td>0.38</td>
<td>Ref concrete 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>4M25F0S-38</td>
<td>71:25:0:4</td>
<td>0.38</td>
<td>P II+4%M FA+25%M FA</td>
<td>25</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>4M0F0S-42</td>
<td>96:0:0:4</td>
<td>0.42</td>
<td>P II+4%M S</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>8M0F0S-42</td>
<td>92:0:0:8</td>
<td>0.42</td>
<td>P II+8%M S</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>8M25F0S-34</td>
<td>67:25:0:8</td>
<td>0.34</td>
<td>P II+8%M FA+25%M FA</td>
<td>25</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>12M0F0S-38</td>
<td>88:0:0:12</td>
<td>0.38</td>
<td>P II+12%M S</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>8M25F0S-38</td>
<td>67:25:0:8</td>
<td>0.38</td>
<td>P II+8%M FA+25%M FA</td>
<td>25</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>4M2SF0S-42</td>
<td>71:25:0:4</td>
<td>0.42</td>
<td>P II+25%M FA+25%M FA</td>
<td>25</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Chloride collection - migration

![Chloride collection - migration graph](image_url)
Compressive strengths

Cracking temperature

Durability aspects of fly ash and slag in concrete
84 day Cl versus cracking temperature

Compressive strength, selected mixes, w/cm=0.34
Conclusions, Wuhan (from the Institute)

- A small amount of silica fume can greatly increase the permeability resistance, make up the shortcomings of low early strength of fly ash concrete and improve mechanical properties of concrete.
- Also other properties silica fume concrete can be better than that of the concrete with fly ash or slag powder, for high-strength concrete structures in marine environment with special need for durability.
- In all, silica fume has a broad application prospects in practical engineering.

Comments, Wuhan

- This was a very good GGBS
- Ternary blends work great, and crack risk can be minimized
Some other experience

Other SCM's

Other SCM's

Flyash class c, 11. april 2006
Flyash class f, 11. april 2006
VCAS Micron HS Wet
MS Standard
VCAS Micron HS, 11. april 2006
Metakaolin, GP procedure
EM 940U
EM 920D
Rice Husk USA, Primary agg method
Manufacturers numbers

Superpozz

- Pozzolanaktivitet:
 - Sammenligning mellom referansemørtel og mørtel der 10 prosent sement er byttet ut med testmaterialet.
 - 7 døgn: 94.3%
 - 28 døgn: 103.6%
- "Effektivitetsfaktor" er ca. 1
RRHA

- + 600 million tons of rice
- 125 million tons Rice Husks
- + 25 million tons RRHA if burnt properly
 - Pre-treatment
 - Burning temperature
 - Post-treatment

PSD

Risaske etter Prim agg metode

- Rice Husk USA, Primary agg method
- Rice Husk Ash India PA-method
- Rice Husk Thai Primær
- EM 920D

Page 289 of 299
Nordic workshop, Oslo, Norway, February 15-16, 2012
12
RRHA/MS – strength (Material from USA)

RRHA – Chloride indicator

Durability aspects of fly ash and slag in concrete
Transport coefficient NTBuild 492

Different WRA's

Mix ID	Average Adjusted Charge, Coulombs
Ref	4185
3599	
10% MS	472
429	
10% RHA	833
859	
20% RHA	487
494	
Perlite performance
Tests at University of Toronto

Mixtures

- White Cement Control
- 10% Perlite A
- 20% Perlite A
- 10% Perlite B
- 20% Perlite B
- 15% Perlite A plus 5% silica fume
- 10% silica fume
Tests

- ASR – C1567
- Strength
- C1202
- C1556
ASTM C1202 – Perlite fines

Chloride profiles, Perlite
Diffusion coefficients

- White Cement Control
- 10% Perlite A
- 20% Perlite A
- 10% Perlite B
- 20% Perlite B
- 15% Perlite A plus 5% silica fume
- 10% silica fume

Coulomb versus \(D_{\text{eff}} \)

- ASTM C1202 28
- ASTM C1202 56
- Log (ASTM C1202 28)
- Power (ASTM C1202 56)

\(R^2 = 0.9372 \)

\(R^2 = 0.9722 \)
Current work

- Ashes from “other combustions”
 - Burner technologies
 - Pre/post-processing
- Influence of particle sizes and distribution
 - Milling technologies
 - PSD-shape and parameters
 - Economy
- HVFAC in ternary blends
Chloride Transport, NTBuild 492

Transport coefficient \(\times 10^{12} \)

- **3 days**
 - .45,50,9
 - .45,50,6
 - .45,50,3
 - .45,50,0
 - .45,20,9
 - .45,20,3
 - .45,20,0
 - .45,00,9
 - .45,00,9
 - .45,00,3
 - .45,00,0

- **28 days**
 - .45,50,9
 - .45,50,6
 - .45,50,3
 - .45,50,0
 - .45,20,9
 - .45,20,3
 - .45,20,0
 - .45,00,9
 - .45,00,9
 - .45,00,3
 - .45,00,0

NTBuild 492, 28 days

- 48 MPa:
 - \(D = 5.18 \times 10^{-12} \text{ m}^2/\text{s} \)
- HSC:
 - \(D = 0.48 \times 10^{-12} \text{ m}^2/\text{s} \)
- UHPC ternary:
 - \(D = 0.013 - 0.27 \times 10^{-12} \text{ m}^2/\text{s} \)
The future?

- Fly Ash is the only SCM voluminous enough to have an impact
- Which way will fly ash production go?
 - Will quality change?
- Will the 6-10% growth in annual cement consumption continue to grow?
 - How long?
- Will there be sufficient raw materials?
 - For cement
 - For aggregates
- Will other binders be needed – in large volumes?
 - Documentation lacking
 - Portland based for critical structures – here experience exists