Etatsprogrammet Moderne vegtunneler
2008 - 2011
Vegtunneler og lokal luftkvalitet

Statens vegvesens rapporter
Nr. 152

Vegdirektoratet
Trafikksikkerhet, miljø- og teknologiavdelingen
Tunnel og betong
August 2012
Statens vegvesens rapporter

<table>
<thead>
<tr>
<th>Tittel</th>
<th>NPRA reports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etatsprogrammet Moderne vegtunneler 20008 - 2011</td>
<td>Norwegian Public Roads Administration</td>
</tr>
</tbody>
</table>

Undertittel

Vegtunneler og lokal luftkvalitet

Forfatter

Norconsult AS

Avdeling

Trafikksikkerhet, miljø- og teknologiavdelingen

Seksjon

Tunnel og betong

Prosjektnummer

602182

Rapportnummer

Nr. 152

Prosjektleder

Harald Buvik

Godkjent av

Norconsult AS

Emneord

Etatsprogram, Moderne vegtunneler, Tunnel, Strategi, Luftkvalitet

Sammendrag

Rapporten er oppdelt i følgende hovedområder:

- Belastninger, krav og helseeffekter
- Kilder og emisjoner
- Ventilasjonsprinsipper og styring
- Rensing - prinsipper og status

Antall sider

Dato 21. august 2012
MODERNE VEGTUNNELER
TUNNELER og LOKAL LUFTKVALITET
VURDERING AV VENTILASJONSSYSTEMER OG RENSEMETODER

| Antall sider: | 51 |
| Produsent: | Norconsult |

PROJEKT:
5013053

DOKUMENT-/TEGNINGSNUMMER: Revisjon
00

DRIFTSOKUMENT-/TEGNINGSNUMMER: Revisjon
00A
INNHOLD

SAMMENDRAG OG KONKLUSJON .. 4
1 INNLEDNING ... 7
2 KRAV OG BELASTNINGER .. 8
 2.1 STYRENDE PARAMETERE .. 8
 2.2 HELSEEFFEKTER .. 8
3 KILDENE TIL FORURENSNING .. 10
 3.1 VEGDEKKE - MATERIALER .. 10
 3.2 TILTRANSPORT AV FORURENSNING TIL TUNNELER .. 10
 3.3 EMISJONER FRA KJØRETØY .. 11
4 VENTILASJONSPRINSIPPER ... 13
 4.1 LANGSLUFTING ... 13
 4.2 NATURLIG MEDRIVNING .. 14
 4.3 TVERRLUFTING ... 16
 4.4 PORTALLUFTING .. 17
 4.5 FLERLUFTING ... 20
 4.6 KRITERIER FOR VALG AV LUFTETÅRN ... 21
5 RENSEANLEGG ... 23
 5.1 KONKLUSJON ... 23
 5.2 GENERELL UTVIKLING .. 23
 5.3 TYPER RENSEANLEGG .. 24
 5.4 ELEKTROSTATISK FILTRERING (EPS) ... 25
 5.5 GASSRENSING .. 28
 5.6 STYRING AV VENTILASJON .. 28
 5.7 NORSKE ERFARINGER .. 29
6 .. 29
7 REFERANSES .. 30
8 APPENDIKS 1: TRAFIKKEN SOM BELASTNING .. 32
 8.1 TRAFIKKARBEIDET ... 32
9 APPENDIKS 2: EMISJONENE FRA DET ENKELTE KJØRETØY .. 33
 9.1 EURO 4, 5 OG 6 ... 33
 9.2 PIARC EMISJONSFRAMSKRIVNING .. 33
 9.3 DANMARKS MILJØUENDERSØKELSE – DMU.. 34
 9.4 TESTKJØRING MED ALTERNATIVE MÅLESYKLER .. 35
 9.5 SPREDNINGSBEREGNINGER FOR NO2 I OSLO OG BÆRUM, NILU 2011 37
 9.6 UTSILP AV NO2 FOR TUNGE KJØRETØY ... 39
 9.7 SSBS NASJONALE MODELL FOR FRAMSKRIVNING AV VEGTRAFFIKKUTSLIPP 39
 9.8 LUFTKVALITET I 60 TUNNELER I MARS 2010 ... 39
 9.9 KONKLUSJON ... 40
10 APPENDIKS 3: PARTIKLER - SIKT ... 41
 10.1 MILJØVENNLIGE VEGDEKKER ... 41
 10.2 STATUSRAPPORT PÅ STOV FOR NORGE, SVERIGE OG FINLAND ... 41
Moderne vegtunneler: Tunneler og lokal luftkvalitet

10.3 MÅLEUNDERSØKELSER .. 42
10.4 STØVDEMPENDE TILTAK .. 43

11 APPENDIKS 4: HEELSEFFEKTER FRA VEGETRAFIKK ... 44
11.1 SAMMENDRAG .. 44
11.2 SVEVESTØV .. 44
11.3 DIESELEKSOS .. 45
11.4 NITROGENOKSIDER ... 45
11.5 KRAV TIL LUFTKVALITET ... 46
 11.5.1 Grenseverdier for lokal luftkvalitet .. 46
 11.5.2 Luftkvalitet i arealplanlegging .. 47
 11.5.3 Administrative norm ... 48
 11.5.4 Luftkvalitet i tunneler ... 48
 11.5.5 En sammenstilling av de ulike kravene til luftkvalitet .. 48

12 APPENDIKS 5: UTSLIPP FRA TUNNELMUNNING – SPREDNINGSKART 50
Sammendrag og konklusjon

Bygging av vegtunneler i Norge øker. Vegtunneler har grovt sett to hovedmål - framkommelighet og sikkerhet. Dette betyr:

- Bedring av framkommeligheten i tette områder
- Nedkorting av transporten i tid og avstand i rurale strøk. Dvs. å bygge vegene gjennom fjell og under fjorder.
- Å løse lokal miljøproblemer i tettede områder.
- Å bedre sikkerheten gjennom å unngå rasfarlige strøk, samt strekk utsatt for vind og snø.

Det er en klar tendens til å ønske flere og lengre tunneler, samtidig som man vil unngå lokalproblemer knyttet til støy og forurensninger nær tunnelmunninger og luftetårn. Bruk av tunneler gir også utfordringer knyttet til sikkerhetsvurderinger (typisk: brann), energibruk og økte kostnader knyttet til bygging og drift.

Rapporten er oppdelt i følgende hovedområder:

- Belastninger, krav og helseeffekter
- Kilder og emisjoner
- Ventilasjonsprinsipper og styring
- Rensing - prinzipper og status

Kilden til forurensning – emisjoner fra kjøretøy

Generelt:

- Det skjer en betydelig forbedring av motorteknologi som gir reduserte emisjoner fra kjøretøy.
- Tunge kjøretøy baseres utelukkende på diesel som drivstoff og synes å benytte en god renseteknologi. Lette kjøretøy utgjør nær 90% av kjøretøyene på vegen. De siste årenes overgang fra de lavemitterende bensinmotorer til et sterkt økende antall dieselmotorer har medført et stabilisering av forurensningsnivået. Dette i motsetning til den sterke bedringen som var forventet. Dvs. de lette kjøretøyers dieselmotorer har kun forbedret seg marginalt.
- I dag er det NO2 som ansees som den styrende luftforurensning knyttet til ventilasjonsbehovet i tunneler. I tillegg er det en stor kilde mht lokal forurensning nær tunnelportaler, og er en generell forurensning som tett trafikkerte strøk.
- Piarc (Piarc 2011) forventer på sikt en fortsatt betydelig reduksjon i både NOx og NO2.
- Kravfokus for nær framtid er ikke god nok. Europeiske målinger av utslipp fra mer reelle kjøresykluser enn EURO-testene viser at vanlig kjøring gir et betydelig høyere utslipp enn EURO-kravene. I tillegg er farlighetsgraden av forurensning i mindre grad knyttet til NO2 og ikke NOx generelt. Farlighetsgraden fanges i liten grad opp av kravene.
- EURO-testene viser en minkende NOx-emisjon i tråd med kravene. Imidlertid har NO2 en sterkt økende andel av samlet NOx, slik at man ser ingen klar reduksjon i NO2. EURO-kravene bør derfor ikke benyttes for beregninger av utslipp. Det er et behov for at både testene og kravene endres.
- For partikler i avgass fra kjøretøy ventes en fortsatt reduksjon i utslippsfaktorene. Sotutslipp ventes å bli redusert i større grad enn stov som slites av og rives med fra kjørebanen. Internasjonalt forventes partikkelemissjonen å bli mer dominerende for dimensjonering av ventilasjonsbehovet etter hvert som utslippet av NOx går ned.

Norge

- NILU forventer at utslippsfaktorene og konsentrasjonen av NO2 vil stabilisere seg, og i verste fall, øke noe i Norge på grunn av den store andelen lette dieselbiler. Nye tester utført av Statens vegvesen høsten 2011 (Lotsberg 2011) er en sterk indikasjon på dette.
- Nasjonale målinger og beregninger viser foreløpig ingen reduksjon i Norge de siste årene, snarere en betydelig økning av NO2 knyttet til det sterkt økte salget av lette dieselkjøretøy. Et viktig bidrag her er de betydelige emisjoner Norge har i tilknytning til kaldstartere (vinter, lengre stopp
Moderne vegtunneler: Tunnel og lokal luftkvalitet

- bl.a. i forbindelse med ferjer og ferjeleier) og lange lavtrafikkerte tunneler der oppholdstiden gir en betydelig omdanning av NO til NO₂.
- I Norge forventes ikke partikkelreduksjonen å være like framtriedende som i resten av Europa på grunn av piggedekkkubrak og støv fra slitasje av vegdekke.
- Oppdatert utslippsmodell fra SSB anbefales benyttet for utslipps beregninger (ferdigstilles 2011/2012)

Renseteknologi – Statusbeskrivelse

Det rapporteres nå om flere driftsår med flere typer rensestasjoner for tunnelluft, ikke minst i Japan.
- En rekke av de nye rensestasjonene har partikkelrensing kombinert med rensing av NOx og NO₂.
- Driftserfaringer over 2 til 3 år på nyere anlegg synes å være gode.
- Rensevirkningen er i henhold til spesifiseringene og ligger på bedre enn 80 %. Kravene synes å bli hevet til 90 %.
- Rensing av NO₂ direkte, uten å rense den langt mindre farlige NO-andelen, angis å redusere storrelsen og kostnadene merkbart.
- Reduserte emisjoner styrker imidlertid enklere tiltak:
 - partikkelrensing i istedenfor gasrensing
 - luftetårn istedenfor luftetårn med rensing
 - vendt ventilasjon istedenfor tårn der dette er mulig
 - trafikkstyring
- Enkelte internasjonale arbeider påpeker effektiviseringer og forenklinger knyttet til energibruk og drift. Det påpekes bruk av store energieffektive vifter og økte luftmengder i tårnene, herunder plasserering av viftene og styring av disse.

Anbefalinger

Emisjoner fra kjøretøy

- Forbedrede beregningsmodeller som tar bedre vare på norske forhold anbefales. Herunder anbefales å innføre de kommende data som nå er i ferd med å sluttføres bl.a av NILU. Dette vil si ‘Oppdatert utslippsmodell’ fra SSB (ferdigstilles 2011/2012)
- Den norske modelleringen anbefales sammenlignet og effektforklart ift. internasjonale data som Piarc og internasjonale forskere har. Beregningsmodellen bør legges opp mot de internasjonale modellene
- NO₂ anbefales fortsatt benyttet som den styrende luftforurensningsforbindelsen for ventilasjon av vegtunneler.

Renseteknologi

- Det anbefales å vektlegge renseteknologi som belaster forurenseren, som er kjøretøyene. Effekten vil da virke på alle kjørestrekk og ikke bare inni tunnel.
- Generelt sett vil styringen av renseanlegg følge det samme prinsippet som styring av luftetårn. Dette betyr at man starter anleggene når det lokale behovet tilsier dette. Styringen skje så på en slik måte at mest mulig trekkes inn gjennom luftetårn eller renseanlegg. Tilstrekkelig avsugskapasitet er viktig slik at minst mulig forurenset luft unngår å bli oppfanget.
Moderne vegtunneler: Tunneler og lokal luftkvalitet

- Ved behov for å redusere forurensning lokalt anbefales først og fremst å satse på andre tiltak enn renset av tunnelluft. Dette fordi tunnelluften må nødvendigvis være helsemessig akseptabel for trafikantene. Tunnelluften er derfor lite forurenet og krever meget store anlegg for fjerne marginale forurensninger.
- Alternative ventilasjonsmåter, luftetårn og styring av ventilasjon anbefales.
- Rensing kan være aktuelt i lange tunneler der det er vanskelig å skaffe friskluft utenifra. Normalt vil dette ikke være tilfellet.

Luftetårn

Luftetårn bør vurderes ved:
- Lange toveistunneler
- Bygging av tunnel i tettbygde strøk, dvs. der tunnelmunninger kommer nær bebyggelse. Særlig er områder med boligstrøk, skoler og barnehager der man befinner seg ofte ute nær bakkeplan, utsatt.
- Bygging av tunnel i områder med høy trafikkbelastning og høye bakgrunnskonsentrasjoner for luftforurensning
- Områder med spesielle meteorologiske forhold som stillestående luft (‘kaldgroper, bakevjeområder med lite vind og dermed liten luftutveksling).
- Lukkede kontor-, industri og blokkstrøk kan ha lite lokal uteaktivitet. Det anbefales her å se på mulighetene for å installere god balansert mekanisk ventilasjon med friskluftsinntak godt over det forurensede gateplanet.
- Kun for spesielle tilfeller med konsentrerte bebygde områder med lav luftutveksling, det vil si områder hvor luftforurensning i liten grad blir luftet ut, synes det å være aktuelt å vurdere luftetårn med renset.
1 INNLEDNING

Omfanget av tunneler i Norge har økt blant annet fordi det er ønske om å løse lokal miljøproblemer fra vegtrafikken ved å legge gjennomgangstrafikk under bakken. Det er en klar tendens til å ønske flere og lengre tunneler, samtidig som man vil unngå lokalproblemer knyttet til støy og forurensninger nær tunnelmunninger og luftetårn. I tillegg kommer også utfordringer knyttet til sikkerhetsvurderinger (typisk: brann), energibruk, samt kostnader knyttet til bygging og drift.

Tunneler medfører at luftforurensning samles i et lukket rom og at slippes ut ved tunnelmunning. Dette medfører at forurensningsbelastningen i disse områdene kan bli høy og ventilasjon gjennom luftetårn kan være nødvendig dersom det er arealbruksinteresser nær tunnelmunningen.

Det skjer en sterk utvikling i retning av langt mer miljøvennlig kjøretøy. Utslippene reduseres vesentlig raskere enn kravene til luftkvalitet skjerpes. Man ser betydelig reduksjon av forbruk av drivstoff.

Statens vegvesen ønsker gjennom denne rapporten

- En statusbeskrivelse av aktuelle ventilasjonssystemer og tilgjengelig renseteknologi. Dette skal omfatte forhold som finnes nasjonalt og internasjonalt for tunneler, samt en redegjørelse for svakheter og styrker i forhold til renseeffekt, drifts- og styringssystemer.
- Videre ønskes en beskrivelse av hvordan tunnelenes bidrag til luftkvalitet i bebygde områder og høye munningskonsentrasjoner reduseres. Det skal fokuseres på PM\textsubscript{10} og NO\textsubscript{2}.
- Videre ønskes en beskrivelse og anbefaling av hvordan ventilasjons- og rensesystemer samt bruk av luftetårn bør styres slik at tunnelens bidrag til lokal luftforurensning kan reduseres.

Bildet knyttet til framskrivning av emisjoner og emisjonsreduksjoner er usikkert især for andelen NO\textsubscript{2} av NO\textsubscript{x}. Rapporten går kun i liten grad inn på å konkludere her og kun korte beskrivelser av tendene er tatt med i appendiks.
2 KRAV OG BELASTNINGER

Tiltak er en funksjon av hvilke krav man stiller, målt opp mot de belastningene, man har. Kravene er gjerne knyttet til sikt og helseeffekter.

2.1 Styrende parametere

Sikt
Sikt omfatter partikkelforurensning i form av sot fra forbrenningsprosessen i motorene og støv fra slitasje av vegbane og oppvirveling av gammelt støv. Svevestøv og siktproblematikk er først og fremst en trafikksikkerhetsfaktor i tunneler. I Norge benyttes først og fremst måling av NOx for styring av ventilasjon, men i enkelte tunneler i Sveits styrer ventilasjon på basis av optiske målinger av svevestøv.

NO og NO2
NOx består i hovedsak av NO og NO2. Begge disse er reaktive gasser som dannes ved forbrenning ved høy temperatur, og kommer både fra naturlige og menneskeskapte kilder. Det dannes vanligvis mest NO, men i nærver av ozon omdannes NO videre til NO2. Det er NO2 som er forbundet med mest helseskade. HB021 har derfor et krav til at luften i lange tunneler skal utskiftes innen 2 timer for at ikke omdanningen til NO2 går for langt. Kravet baserer seg på målinger Statens vegvesen har foretatt i Lærdalstunnelen (Lotsberg 2011). NO2 er dimensjonerende for tunnelventilasjonen og den eneste gassen det er nødvendig å føre kontroll med i tunnelene (se kap om CO).

Ozon
Ozon i luft reagerer nokså umiddelbart med NO og omformer den til NO2. Ozon finnes i liten grad inne i tunnelene. Ozon- konsentrasjon utenfor tunnelen vil i bystrøk ligge rundt ca. 60 ppm, noe som gir en økning av NO2 konsentrasjonen i tunnelluften med 60 ppm nokså umiddelbart idet den kommer ut av tunnelen.

CO
For moderne motorer med katalysatorer regnes CO å være under kontroll og ikke styrende for tunnellufting. I følge rapporten «Luftkvalitet i 60 tunnelar i mars 2010. Kommentar til ventilasjonskapasitet og styring » fra Statens vegvesen, region vest, har motorutviklingen medført at i dag er NO2 den eneste gassen det er nødvendig å føre kontroll med i tunnelene. Denne utviklingen ble forsterket av omleggingen av bilavgiftene og den store overgangen fra bensin til dieseldrift.

2.2 Helseeffekter

Helsevirkninger av luftforurensning er blitt undersøkt ved en lang rekke befolkningsstudier, samt ved eksperimentelle studier. I mange av studiene har trafikk vært en vesentlig kilde til luftforurensningen. Studiene har i stor grad vist at luftforurensning gir uønskede helsevirkninger og at det er en sammenheng mellom eksponering for luftforurensninger og dødelighet og sykdommer, spesielt luftveis- og hjertekarsykmommer. I følge Folkhelseinstituttet synes helsevirkningene å kunne forekomme også ved konsentrasjoner under dagens grenseverdier.

Helseeffekter som følge av luftforurensning er årsaken til at det i forurensningsforskriften er krav til lokal luftkvalitet samt at det settes grenser for emisjoner fra kjøretøy og industri. Helseeffektene av de to viktigste forurensningsforbindelsene knyttet til veitrafikk er beskrevet nedenfor. Konsekvensene for befolkningen er slik at det kontinuerlig bør jobbes for bedre luftkvalitet.

Moderne vegtunneler: Tunneler og lokal luftkvalitet

Folkehelseinstituttet har sammen med Trafikkøkonomisk institutt og Klif utarbeidet en rapport om helseskadelige effekter av luftforurensning (TA-2251/07) (Klima og forurensningsdirektoratet, 2007) i henhold til rapporten viser overvåkningen av luftforurensningen i norske byer at mange mennesker fortsatt er utsatt for nivåer som er over grenseverdiene i forurensningsloven og nasjonale mål.

Svevestøv
Svevestøv består av en kompleks blanding av partikler av ulik størrelse og kjemisk sammensetning. Trafikk og vedfyring er de viktigste lokale kildene for de små forbrenningspartiklene (<2,5 µm, PM_{2.5}). Veidekkslitasje er den viktigste kilden for større partikler (>2,5, grovfraksjon). Alle inhalerbare partikkelstørrelser har potensial til å forårsake helseskade.

Svevestøv består ofte av en partikkelkjerne, men kan ha bundet til seg ulike forbindelser som metaller og organiske miljøgifter (f.eks. PAH) og biologisk materiale som bakteriekomponenter og pollen. Helseeffektene av partikler skyldes trolig ikke enkeltkomponenter, men en kombinasjon av flere komponenter.

Tilgjengelig kunnskap tyder på at eksponering for svevestøv har sammenheng med uønskede helsevirkninger selv ved relativt lav konsentrasjoner (Folkehelseinstituttet, 2011). Det foreligger nå data som tyder på slike sammenhenger også ved betydelig lavere konsentrasjoner enn 50 µg/m³ PM₁₀. Virkninger av forholdsvis store partikler (over PM₁₀) forekommer stort sett i ovre luftveier som nese, munn, svelg og bihuler. Mindre partikler har i langt større grad sammenheng med sykelighet i nedre luftveier og i områder der gassutvekslingen foregår.

Lavere konsentrasjoner av PM_{2.5} synes å forårsake høyere risiko for helseeffekter enn det man finner ved tilsvarende konsentrasjon av PM₁₀. Det er svært sannsynlig at det er forskjeller mellom ulike typer partikler med hensyn til deres evne til å utløse helseeffekter, men her er kunnskapen mangelfull og videre forskning er nødvendig for å kunne vurdere hvilke typer partikler/partikkelegenskaper som er mest helseskadelige.

Dieseleksos
Ved fastsettelse av administrativ norm for dieselpartikler har Arbeidstilsynet vektlagt effekter på lunger, hjerte- og karsystem samt faren for kreft ved lang tids eksponering. Dieseleksos er ansett som mulig kreftfremkallende blant annet på grunn av mulig innhold av organiske forbindelser som PAH- og nitro-PAH, som er klassifisert som kreftfremkallende. Selv om det ikke er påvist noen klar dose - respons – sammenheng, er det antatt at dieseleksos, herunder dieselpartikler, kan forårsake kreft. (Arbeidstilsynet, 2009)

Nitrogenoksider
Forbrenning av drivstoff fører til utslipp av både nitrogenmonoksid (NO) og nitrogendioksid (NO₂) som samlet kalles for nitrogenoksid eller NOₓ. Nitrogenoksid er en god indikator for trafikkrelatert luftforurensning.

NO₂ har effekter på luftveiene og lungefunksjon, spesielt hos astmatikere. Korte episoder med NO₂-konsentrasjoner kan gi helseeffekter både i form av forverret sykdom og dødelighet. De laveste konsentrasjonene som gir slike akutte virkninger ligger i området 200 til 500 µg/m³. NO₂ fungerer i tillegg som en markør for annen forurensning fra vegtrafikk, spesielt eksospartikler. Astmatikere, allergikere og barn er de mest følsomme gruppene for helseeffekter av NO₂. Av hensyn til disse gruppene, er det viktig å redusere korttidsnivåer av NO₂. (TA2842, Veiledning om gjennomføring av tiltak rettet mot luftforurensning, Klif, 2011)
3 KILDENE TIL FORURENSNING

I all renseteknologi er det et viktig prinsipp at man går for å begrense kildene først. Problemstillingen er ikke minst aktuell for tunneler. Luftkvaliteten inne i tunnelen må være akseptabel for trafikantene. Konsentrasjonene av forurensende stoffer i tunnelluften skal derfor i utgangspunktet være meget lave. For rensing av tunnelluft betyr det at et renseanlegg skal håndtere meget store luftmengder i forhold til mengden forurensning som skal fjernes.

Vi går kort inn på noen av følgende kilder og effekter:

- Bakgrunnsnivået: Dette kan typisk forårsakes av håndtering av utslipp fra fyring for oppvarming av boliger, bygg og industri, samt lokaltrafikk. Fjernvarme er et positivt hjelpemiddel mht reduksjoner, samt trafikkstyring og lignende.
- Vegdekke: Slitasje av vegdekke, valg av vegdekkematerialer.
- Slitasjen: Piggedekk andel og kjørehastigheter
- Tunnelvask og salting.
- Tiltransport av forurensning
- Utslipp av forbrenningsprodukter fra kjøretøyene; typisk sot, CO, NOX (NO og NO2).

3.1 Vegdekke - materialer

Samlet kan vegdekke, kjørehastighet og tunneler med møtende trafikk representere et spesielt støvproblem med gjenlegging av større mengder støv ift. på tradisjonell veg. Dette kan medføre at den lokale støvbelastningen øker og at støvkonsentrasjonen kan ha andre karakteristika enn f.eks NOx.

Slitasjetester fra vegsimulator viser at kjørehastighet har en stor innflytelse på støvproduksjonen. Dette bekrer av resultatene fra forsøk utført i Oslo der hastighetsgrensen om vinteren nedsettes fra 80 til 60 km/t på utvalgte vegstrek.

3.2 Tiltransport av forurensning til tunneler

Kortslutningseffekt

Et viktig forhold for å oppnå så god luftkvaliteten inne i tunnelen som mulig er å redusere muligheten for tiltransport av forurenset luft utenifra. Det betyr at den luften som skal inn i tunnelen må være så ren som mulig. For to-løpstunneler er utformingen av tunnelportalene viktig slik at man forsinkes å unngå at forurenset luft fra utportalen blir trekket over og inn i det andre løpet som frisk luft. Erfaringsmessig vet man at en typiske to-løpстunnel kan trekke over vesentlig andeler fra en nærliggende utportal og over til innportalen. En slik innblanding av forurenset luft fra ett tunnelutløp over til ett tunnelinnløp kalles en kortslutningseffekt. Det anslås at dette kan dreie seg om inntil 20 % av luften. Dette øker mengden forurensset luft i tunnelen og betyr en 20 % økning i ventilasjonsbehovet og henholdsvis økt driftstid for viftene.
Tiltransport av støv og større partikler

Det legges igjen merkbar mer støv inne i tunnelen enn slitasjen av dekket tilsier. Dette er en iakttagelse bl.a. fra driftspersonalet knyttet til Helltunnelen (2011). Dette antas å være knyttet til de trykkstøt som opptrer ved entring av tunnelen, samt ikke minst ved passasje av to tunge kjøretøy inne i tunnelen. Typisk vil kjøretøyene riste av seg oppsamlet støv som er pakket i understell i form av støv- og sandlag. Hendelsene kan ventelig oppstå ved innsvar av tunneler av mange forhold. Her vil lange tunneler også bevirke en svak oppvarming som gjør at klumper med is og støv lettere kastes av. Problemet forventes å være større i lange og to-veis tunneler der det kjøres med stor hastighet.

Statens vegvesen har god erfaring med vasking av tunneler som tiltak for å redusere svevestøvproblematikken. Å ventilere ut forurensningen, eller å fange den i renseanlegg, ventes å være mindre kostnadseffektivt både mht investering og effekt enn vasking av tunneler.

3.3 Emisjoner fra kjøretøy

Tiltak for bedre luftkvalitet i tunneler baseres på forholdet mellom krav til luftkvalitet og belastning. En viktig del av belastningen er:
- Trafikkmengden; dvs. trafikkarbeidet
- Fordelingen av dieseldrevne, bensindrevne, elektriske og hybrid kjøretøy
- Fordelingen av nye og gamle biler, dvs. fornyelsen av kjøretøyparken
- Emisjon fra eksisterende og nye biler
- Kjøremønster

En kortfattet gjennomgang av temaet er gitt i appendiks 2. Oppsummert er det er en rekke usikkerheter knyttet til framskriving av emisjonsbildet.

Tester viser at emisjonsrater forbundet med mer realistisk kjøring ligger vesentlig over utslippene ved testing og godkjenning etter EURO-kravene. Dette har vært kjent i mange år (ref. AECC 2006). Det forventes at Piarc's (World Road association) nye data vil bli overholdt i fremtiden, hvis ikke flere tiltak for å begrense utslipp av NO2 blir iverksatt.

Samtalene med Statens vegvesen bekrefter at forholdene knyttet særlig til lette kjøretøy er vanskelig. Den sterke tenden til reduserte utslipp synes å ha stoppet opp. Det er særlig bekymring for kaldstart, og motorer som stanses ved kjøring i utforbakker og ved stanser som er av varighet mer enn 15 til 20 minutter. Et større måleopplegg er igangsatt, og de første målingene ventes ultimo september i år (Lotsberg 2011).

Det vil alltid være stor usikkerhet i alle framskrivninger av utslippsfaktorer og sammensetningen av bilparken. I tillegg er det et stort behov for å justere utslippsfaktorene knyttet til NO2 i særdeleshet. Som et første konservativt anslag antas det å kunne benyttes emisjonstallene fra NILU for lette kjøretøy (NILU 2011). Disse må splittes opp i lette dieseldrevne kjøretøy, som utgjør ca. 75% av totalen (typisk andel 65% passasjerbiler og 10% varebiler). Lette dieseldrevne kjøretøy antas å utgjøre ca. 25% av lette kjøretøyene.

For framskrevne beregninger for NO2-utslipp fra tunge kjøretøy kan det velges å følge estimatet Piarc. Dette betyr en reduksjon på ca 80% for tunge kjøretøy. Som basis kan man ta utgangspunkt i HB021 eller Piarc's utslippsfaktorer for tunge kjøretøy (Piarc 2011b). HB021 er noe mer konservativ enn Piarc for dagens situasjon.
For sot og tilhørende sikt ventes det en reduksjon som er noe høyere selv om man tar hensyn til oppvirvling av støv (ikke-eksos partikler). En betydelig nedgang i CO emisjon (g/km) ventes.
VENTILASJONSPRINSIPPER

En kort beskrivelse av ventilasjonsprinsipper vises for å gi et innblikk i alternative løsninger, se figurene nedenfor. Kravene i luftkvalitet er normalt vesentlig strengere utenfor tunnelen ift. inne i tunnelen. Blant annet skyldes dette at man eksponerer alle, og over vesentlig lengre tid, utenfor tunnelen. Det gir prinsipielt to former for ventilasjon:

• Tunnelmiljøet skal sikres en tilstrekkelig lav konsentrasjon av eksosgasser for trafikantene inne i tunnelen, og
• Portalområdene, inkl. eventuelle utslippsområder knyttet til luftetårn skal sikres kravet til luftkvalitet

Forskjellige lufteprinsipper beskrives under. I hovedsak kan det skilles mellom å ventilere for trafikantene, dvs. inne i tunnelen, og det å ventilere for å bedre lokalklimaet, dvs. portalområdene. Prinsippene har fordelaktige effekter både for trafikantene og portalområdene.

4.1 Langslufting

I Norge er prinsippet langslufting dominerende. Dette pga. at landet har mange tunneler, gjerne kombinert med lav trafikk. I tillegg er luftprinsippet kostnadsmessig rimelig, er enkelt og har en høy generell effektivitet.

Langslufting har begrensninger knyttet til bruk i flere land, se tabellen under. Dels har dette ventelig historiske årsaker, knyttet til langt større trafikkmengder enn i Norge og dermed økonomiske muligheter. I tillegg baserer valg av ventilasjonsprinsipp seg på vurderinger om sikkerhetsventilasjon og muligheter for å begrense gass- og røykspredning i noen grad. Internasjonalt er det i likhet med i Norge en sterk trend til øket utbygging av tunneler. Rimeligere løsninger som langslufting har fått vesentlig fokus. Det er å forvente at man åpner for utvidet bruk av langslufting.

<table>
<thead>
<tr>
<th>Land</th>
<th>Krav til langslufting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Østerrike</td>
<td>Ingen begrensninger men skal risikovurderes</td>
</tr>
<tr>
<td>Tyskland</td>
<td>Intil 2 km med toveistrafikk ellers 4 km</td>
</tr>
<tr>
<td>Frankrike</td>
<td>Maks 800 m (1000 m for trafikk under 2000 kjt pr døgn, dersom trafikk i begge retninger i ubebyggede områder). Ikke lov med tunnelvifter i bebygde områder med trafikk i begge retninger. Intil 4 km ved enveis trafikk i ubebyggede områder. I bebygde områder maks 800 m.</td>
</tr>
<tr>
<td>USA</td>
<td>Tunneler inntil 900 m</td>
</tr>
<tr>
<td>Sverige</td>
<td>Ingen begrensning, brannsikkerheten skal risikovurderes</td>
</tr>
</tbody>
</table>

En sterk reduksjon i emisjoner fra kjøretøy styrker tunnelbygging som alternativ, samtidig med at det styrker langslufting som prinsipp. Den enkleste form for langslufting er naturlig medrivning fra kjøreøyene.

Langslufting

Langslufting tillater inntil 10 m/s i en-veiskjørte tunneler (HB021), mens to-veiskjørte tillater ca. 7 m/s. En-veiskjørte utnytter medrivningseffekten fra kjøreøy i fart.

• I tett trafikk med hastigheter ligger medrivningshastigheten rundt 25% av kjørehastigheten. Dette betyr at behovet for viftebruk og dermed energibruk reduseres vesentlig.
• Styring av lufteretning med hovedtrafikkens retning vil for to-veis kjørt tunneler spare viftebruk. Typisk kan dette gjøres i forbindelse med morgen- og ettermiddagsrush, samt weekendrush (fredag og søndag).
• Langsventilasjon har vesentlig lavere kostnad ift. halvtverr- og tverrlufting.
Langsling: Tunneler og lokal luftkvalitet

Figur 4-1 Langsling med jetvifter. (Piarc 2011a)

Langsling med Saccardodyse

Saccardodyse får ventilasjonskraften fra egne vifter som kan plasseres utenfor selve tunnelen. De erstatter jetvifter. Dvs. man kan unngå vifter montert i henget ved langsling, se under.

- Luftingen kan kun skje i blåseretningen. Dvs. man oppnår ikke å snu retningen, slik som jetvifter kan reverseres.
- Den konsentrerte plasseringen av skyvkraften betyr stor virveldannelse og må sjekkes ut ift. motorsyklister.
- Viftene plasseres utenfor tunnelen og trenger ikke brannklassifisering.

Figur 4-2 Langsling med saccardodyse. (Piarc 2011a)

4.2 Naturlig medrivning

Figur over illustrerer tydelig at medrivningen øker i mindre grad med økende trafikkstetthet. Dvs. desto mer trafikk desto kortere tunnelstrekning kan ventileres med naturlig medrivning.

Selvsagt bør man under normale forhold ha et minimum av vifteinstallasjoner for å dekke ventilasjonstetthene (HB021) for bruk under tett kø, eller brann.
Figur 4.3 Medrivningshastigheten avhenger av trafikkmengde og kjørehastighet. Her er det beregnet ut fra HB021 med en tungtrafikkandel på 12%.

Beregningsestimat for naturlig medrivning
Best mulig lufting med energiriktig ventilasjon innbefatter god utnyttelse av naturlig medrivning. Et par metoder er her presentert for å gi nyttige overslag av noen av effektene.

1 Naturlig medrivningshastighet
I en-veis kjørte tunneler kan man som et første estimat regne medrivningshastigheten å være 25% av kjørehastigheten. Dette gjelder ved en trafikktetthet på mer enn ca. 1000 kjøretøy pr time. Regnes ventilasjonshastigheten i (m/s) og kjørehastigheten i (km/h) fås da tilnærmet:

Ventilasjonshastighet (m/s) = 0,7 × kjørehastighet (km/h) / 10

2 Eks. Overslag med kjørehastighet (70 km/t).
Ventilasjonshastigheten av medrivningen alene i en en-veiskjørte tunnel beregnes da til 0,7 × 70 km/h = 0,7*(70 (km/h) / 10) = 4,9 m/s

Et lengre tunnelstrekk som avsluttes i portaldel og en parallell rampe, vil få en naturlig medrivning begrenset av formelen ovenfor. Fordelingen av luft mellom utportalen og rampe vil være gitt av forholdene mellom tverrsnitt og hastighet i hvert løp.

3 Eks. Overslag med 5 km en-veiskjørt tunnel i en T9,5 profil tunnel (54 m²).
500 m før utportalen avgrenes en ca. 500 m lang avrampe T7 profil (37 m²)
Hastigheten i hovedlopet er 70 km/h. I rampen er den 50 km/h.
Gi et overslag på luftmengde gjennom tunnelen og fordelingen mellom portaldelen ut og rampen.

Samlet medrivning: Ventilasjonshastighet: 0,7 × 70 km/h /10 = 4,9 m/s
Luftmengde: 4,9 m/s × 54 m² = 264 m³/s
Andel til rampen: 37 m² × 50 km/h / (37m² × 50 km/h + 54 m² × 70 km/t)
= 0,33
Dvs. 33% av totalen går ut gjennom rampen (ca 87 m³/s).
Kommentar: Er rampen lang og utportaldelen kort, så vil rampen trekke ut sin naturlig medrevne luftmengde (0,7 × 50 / 10) m/s × 37 m² = 130 m³/s. Resten (264 – 130) m³/s = 134 m³/s vil gå ut utportalen.
4.3 Tverrlufting

Det er flere metoder for tverrlufting, herunder både halvtverr og midtlufting.

Halvtverr lufting

Halvtverr lufting kan løses med kanalført tilluft eller avtrekk. Løsning med friskluft ført inn fra henget vises under. Avhengig av trafikkretningen og hastigheten presses luften ut på den ene eller begge portaler.

Trykkoppbygningen skjer uten de betydelige støttap som jetvifter gir ved langslufting, men til gjengjeld er det normalt store kanaltap i form av friksjon.

- Brann- og rømningssikkerheten kan økes vesentlig dersom tilluftsventilen kan reverseres, samtidig med at det er styrbare spjeld mellom kanalen og tunnelen.
- Figuren under viser reversering kombinert med lokale avtrekk over brannstedet.
- Innsuget av friskluft gjennom de to portalåpninger kan dimensjoneres slik at det skapes midlertidig sikre steder utenfor røyksonen.

![Figur 4-4 Halvtverrlufting med tilluft. (Piarc 2011a)](image)

Tverrlufting

Tverrlufting vises under. Løsningen krever kanaler for både tilluft og avtrekk. Brannsikkerhetsmessig har løsningen tilsvarende muligheter som for halvtverr lufting.
Moderne vegtunneler: Tunneler og lokal luftkvalitet

Midtlufting
Midtlufting vises under. Luftingen kan skje som avtrekk vist her, eller som tilluft. Avtrekk har fordel ved at portalene holdes frie for eksosforurensning, samt at bruktluft kan enten filtreres eller kastes ut gjennom et luftetårn med tilhørende uttynning.

- Avtrekk begrenser tendensen til mulig duggdannelse ved portalene ved at luften trekkes inn. Tårnvifte gir enten undertrykk (ved avtrekk) eller overtrykk (ved tilluft). Dette kan utnyttes til å begrense antall jetvifter i tunnellopet vesentlig.
- Betydelige besparelser i energi til viftebruk kan oppnås ved å unngå å bygge opp trykk uten bruk av jetvifter.
- Tilluft har energimessig fordel ved fjordkryssing fordi trafikkmedrivningen gir mest luft i retning der hovedtrafikken kjører i oppoverbakke.

Eksempel på midtlufting med renset avtrek finner man i Bragernestunnelen/Drammen. Andre eksempler finner man i mer kompleks form i Operatunnelen/Oslo.

Figur 4-6 Midtlufting. Her vist tunnel med avtrekk (Piarc 2011a)

4.4 Portallufting

Det er en rekke tiltak som gjøres for å bedre forholdene i portalområdene.
Forlenget veggmidtdeler
Det er viktig å forhindre at brukluften fra det ene tunnelløpet trekkes inn i det andre. Kortslutningseffekten bidrar til øket luftebehov, unødig forverring av tunnelluften, samt øket energiforbruk. Eksempel på veggmidtdeler mellom løpene i en to-løps tunnel vises nedenfor. Denne reduserer noe at luften fra utportalen trekkes direkte tilbake og inn i inportalen. Midtveggen bør trekkes 3 til 8 tunnelhøyder ut avhengig av hvor stor eksponering av vegen på utsiden av tunnelen har til frisk luft.

![Figur 4-7 Eksempel på forlenget veggmidtdeler mellom løpene i en to-løps tunnel.](CETU 2010)

Vendtlufting
Vendtlufting er et prinsipp for å slippe tunnelens brukluft ut for den ene portalen, se figuren under. Ved å utnytte ejektorvirkningen (medrivningkraften) fra trafikken, kan man trekke forurensningen tilbake og slippe ut hoveddelen på den ene, mest fordelaktige siden.

- Ventilasjonen er for en stor del selvregulerende, uten behov for viftedrift.
- Normalt trengs en øket vifteinstallasjon som sikkerhet ved lav trafikkhastighet.
- Systemet kunne raskt reverseres i tilfellet brann slik at ikke begge løp blir røykfylte.

![Figur 4-8 Vendtlufting skjermer den ene siden av tunnelen for mesteparten av emisjonene fra tunnelmunningen. Her skjermer den vestre portalen, mens hoveddelen av forurenset luft leggs på høyre siden.](

Typisk utbredelse av forurensning fra tunnelportaler er vist i figuren under. Selve konsentrasjonsbildet vil sterkt avhenge av tunnellengde, stigning, trafikk, hastighet og ventilasjons hastighet.

![Figur 4-9 Typisk utbredelse av forurensning i forhold til tunnelportalen.](

Portallufting

- Utløpet fra tårnet bør ligge minst 2 til 5 m over høyeste bebyggelse i en omkrets på 100 m fra tårnet.
- Utslipphastigheter på 25 m/s gir normalt ikke støyproblemer forutsatt at viftene er lyddempet
- I svært følsomme områder kan utslipphastigheten reduseres til 15 m/s. Gjerne vil dette være om natten da ventilasjonsbehovet også er mindre.
- Energi- og miljømessig gevinster kan oppnås ved å redusere utløpshastighet, øke avtrekksmengden og øke høyden

Eksempel på portallufting med luftetårn finner man i Operatunnelens vestgående løp. Dvs. ut fra utportalen ved Filipstad.

Tabell 4-2 Styringsprinsipp for tunnel med luftetårn ved utportal.

<table>
<thead>
<tr>
<th>SCENARIO: Portallufting med luftetårn</th>
<th>Beskrivelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel med luftetårn.</td>
<td>Tårnet skal være minst 2 m over nærmeste bygning innenfor en avstand på 100 m. Målestasjoner plassert: Ytre miljø - omgivelsene på egnet kritisk punkt ved normalt lengre opphold i området utenfor portalen. Tunnelmiljø - for å styre ventilasjonen av tunnelen.</td>
</tr>
<tr>
<td>Normal drift:</td>
<td>Målestasjon i tunnel styrer tunnelvifter. Ingen aktivisering fra målestasjon i ytre miljø. Tunnelvifter styres ved behov fra tunnelmiljø.</td>
</tr>
<tr>
<td>Ytre miljø – aktivisering</td>
<td>Ytre målestasjon styrer luftetårn. Målestasjon registrerer forurensning og trekker av luft fra tunellen slik at uteluft trekkes inn gjennom utportalen’s åpning.</td>
</tr>
</tbody>
</table>
Portallufting med jetvifter
Portallufting kan utføres med frittstående jetvifter (tunnelvifter) plassert i portalområdet, gjerne rettet 30 til 45 grader oppover. Kan brukes til å spre luften vekk fra den umiddelbare nærhet av portalområdet. Viftenes luftmengde, i tillegg til utblåsingens ejektorvirkning (medrivningseffekt) river med seg tunnelluft vekk fra portalområdet.

- Ungår tårn
- Forenklet løsning der portalområdet er trangt
- Monteres typisk 5 til 10 m innenfor portalutløpet
- Kan også være aktuell å montere like utenfor portalen
- God lyddempning er viktig
- Pga. lyd bør den ha begrenset brukstid. Dvs. bruk knyttet til rushperioder og særlig under vindstille forhold

Portallufting med kanalavkast
Bruk av kanalmonterte aksialvifter i hver sin separate kanal er et lyddempet alternativ av portallufting med jetvifter. Kan benyttes der det i hovedsak er å spre luften vekk fra portalområdet. Arkitektonisk utforming kan være som en søylerekke ut fra portalen og vertikalt opp. Plasskrevende ved at man ikke får utnyttet viftenes ejektorvirkning. Normalt kreves 4 til 7 kraftige kanaler, samlet kanaltverrsnitt 4 til 10 m².

4.5 Flerlufting
Flerlufting er et utvidet prinsipp for flere luftpunkter. Et eksempel på tunneler som er luftet gjennom flere punkter, er illustrert ved Operatunnelen. I figuren under er dette illustrert i det vestgående løpet. Funksjonen er både å ventilere for trafikantene, dvs. tilføre friskluft inn til tunnelen, samt å redusere forurensningsbelastningen for lokalmiljøet. Figuren illustrerer både prinsippet med midtlufting og portallufting.

Avtrekkstårnet mellom Ekebergdelen og Bjørvikadelen har hovedfunksjon å ventilere tunnelen. Dvs. gi plass for innsug av friskluft gjennom det åpne innsugsområdet. Bildet viser både tvillingtårnet (avkastluft) i bakkant og det åpne innsugsområdet i forkant. Kjøreretning er fra Ekebergdelen og framover, dvs. mot fotografen. Tårnets høyde sikrer to forhold:
- Hindrer innsug av bruktluft tilbake i tunnelen.
- Gir god uttynning av bruktluften og forhindre at den belaster lokalmiljøet ved avsugsstedet.

Virkemåten er at avkastluft mellom Ekeberg og ‘Bjørvika’ trekkes av Ekebergtunnelen, og det store ristområdet nedstrøms tårnet er dermed frigjort for å suge inn frisk luft.

Til venstre i figuren, ved utportalen av den opprinnelige tunnelen, dvs. ’Festningstunnelen’, er et avkasttårn satt inn for å bedre det lokale miljøet. Dette tårnet er tilknyttet et partikkelrenseanlegg.
Moderne vegtunneler: Tunneler og lokal luftkvalitet

4.6 Kriterier for valg av luftetårn

Det er en forventning om at luftforurensningen fra kjøretøy skal bli lavere og dermed redusere behovet for bruk av luftetårn i tunneler. De kriteriene som skal oppfylles for luftkvalitet inne i tunneler og for den lokale luftkvaliteten på utsiden av tunnelene er styrende for ventilasjonsløsninger og også for bruken av luftetårn.

Kriterier for lokal luftkvalitet utenfor tunnel er kravene i forurensningsforskriftens kapittel 7, men statens vegvesen har satt Klif og folkehelseinstituttets (fhi) luftkvalitetskriterier som mål for lokal luftkvalitet utenfor tunnelene i HB021. Kravene er vist i Tabell 4-3.

Tabell 4-3: Krav til lokal luftkvalitet utendørs

<table>
<thead>
<tr>
<th>Forurensningskomponent</th>
<th>Midlingstid</th>
<th>Konsentrasjon [µg/m³]</th>
<th>Lovverk/kilde</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO₂</td>
<td>1 time</td>
<td>200</td>
<td>Forurensningsforskriften</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>Klif/fhi</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>døgn</td>
<td>50</td>
<td>Forurensningsforskriften</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35</td>
<td>Klif/fhi</td>
</tr>
</tbody>
</table>

Erfaring fra Statens vegvesen Region vest er at ved enveistrafikk og fri trafikkavvikling, vil stempeleffekten som regel være stor nok til å ventilere tunneler uavhengig av tunnel lengde. Ventilasjonsretningen er da alltid med trafikken. Hvis trafikken om natten blir så liten at trekken stopper opp, blir også utslippet av forurensning så lite at det sjelden blir behov for ventilasjon, men det er viktig å være klar over at NO₂- andelen av NOₓ stiger når ventilasjonsanlegget stoppes i flere timer.

Kombinasjonen av luftetårn og friskluftsinntak vil kunne være aktuelt der man har lange toveis tunneler med mye trafikk, og der det er behov for å få frisk luft inn midt i tunnelen (se figuren over som er hentet fra løsningen for Operatunnelen/Oslo). Ellers er det først og fremst utfordringene knyttet til luftkvaliteten rundt tunnelmunningene som er avgjørende for om det er behov for luftetårn.

Luftetårn vil høyst sannsynlig være mest aktuelt for tunneler med høy trafikk i tettbygde strøk hvor munningkonsentrasjonene blir for høye i forhold til kravene til lokal luftkvalitet.

Luftetårn bør altså vurderes ved:
Moderne vegtunneler: Tunneler og lokal luftkvalitet

- Lange toveistunneler
- Bygging av tunnel i tettbygde strøk, dvs tunnelmunninger nær bebyggelse
- Bygging av tunnel i områder med høy trafikkbelastning og høye bakgrunnskonsentrasjoner for luftforurensning
5 RENSEANLEGG

5.1 Konklusjon

Internasjonalt er det en stor usikkerhet knyttet til om det er riktig å investere i store renseanlegg for tunnelluft. Det foreligger liten dokumentasjon av at de store investeringene er kostnadsriktige. Generelt rapporteres det om positive erfaringer for tekniske forhold for luftetårn med rensing, mens de teknisk-økonomiske forholdene tilsier at tårn med rensing bør unngås.

Det anbefales først og fremst å satse på andre tiltak enn rensing av tunnelluft. Dette omfatter bruk av alternative ventilasjonsmåter, luftetårn og styring av ventilasjon.

Under viser en oppsummering fra det franske senteret for Tunnelforskning, CETU, som anses representativ for status.

At renseanlegg for tunnelluft blir store får man inntrykk av fra bildet (CETU, det franske tunnelforskningssenteret, 2010). Rapporten er et forsøk på å oppsummere status for renseanlegg for veggunneler.

Konklusjonene som trekkes er for partikkelrensing:
- Effektivisering og automatisering av rensingen av selve filterene har vært betydelig
- Filtreringsprinsippene er ikke endret
- Anleggene er store, energikrevende og lite kostnadseffektive

Gassrensing:
- Hovedsakelig adsorpsjonsbasert denitrifisering
- Ført fra laboratoriet og ut til reell bruk
- Lite langtidserfaring

Generelt:
- Ofte installert pga. press fra opinionen
- Lite dokumentasjon av samlet effekt av de store investeringene i renseanlegg
- Mer konvensjonelle metoder virker riktigere å benytte (ventilasjonsprinsipp og luftetårn)

Figur 5-1 Renseanlegg sett med franske øyne (CETU 2010)

5.2 Generell utvikling

Fase I: Hvorfor var Norge så tidlig ute? Et stort antall dels lange tunneler anså å ha vært medvirkende, men ikke minst de strenge miljøkravet som ble uttrykt på denne tidspunktet. Norge var i fremtiden med en god oljeøkonomi antas å ha vært sterkt medvirkende.

Moderne vegtunneler: Tunneler og lokal luftkvalitet

utvendige miljø i form av rensing før utslipp i tårn. Utviklingen av renseteknologi ble da tatt videre av det østeriske miljøet som hadde en sterk hånd med innføringen og utviklingen i Norge 10 år tidligere. I tillegg kom Japan meget sterkt inn på bakgrunn av sine mange tunneler, høy trafikk og industrielle kompetanse og initiativ.

Det er en del usikre parametere som er spesielt framtrepende for Norge:

1. Genereringen av ikke-eksospartikler, dvs. kvitnet til slitasje av bilhjul, kjøredekke, bremser og oppvyrving av stov.
2. For Norge er det piggedekken som gir st betydelig tilskudd.
3. Likeens betyr kaldstarten nærmest en formidabel (HB021 antyder en 10-dobling for bensindrevne kjøretøy) økning av forurensningsnivået de første 5 til 15 minuttene etter oppstart.
4. Omdannelsen av NO til NO2 øker behovet til ventilering betydelig (Lotsberg; HB021) dersom ikke tunnelluften er utluftet innenfor to timer.

Kravene til grenseverdier for forurensninger har ikke økt så sterkt som reduksjonen i emisjonene. Fortsatt er CO kravene greie å oppfylle selv om de har endret seg fra 200 ppm og i Norge ned til 50 ppm. Enkelte land har nede i 30 ppm (Sturm 2011). Kravet til sikt har holdt seg. For PIARC har prosedyrene endret seg slik at de inneholder gjenoppvyrvingen av tunnelstov i beregningene. Det er antatt at partikkelforurensning vil utgjøre en viktig del av behovet for ventilasjon av tunneler framover.

Selv om eksosen inneholder en rekke giftige gasser uten om CO, har en rekke land beholdt CO som indikatorgass som man styrer ventilasjoner etter. HB021 har eksempelvis en påslagsfaktor for CO og NOx. Norske erfaringer er imidlertid gode med hensyn til å benytte NO2-sensorer være et bedre valg (Statens vegvesen Luftkvalitet i 60 tunnelar i mars 2010, 2010)

5.3 Typer renseanlegg

Renseanleggene har en av to hovedfunksjoner, enten

- rensing av luften inne i tunnelen, dvs. for trafikantene, eller
- rensing av luften før den slippes ut, dvs. for det lokale miljøet.

Renseprinsippene er de samme. De første anlegg ble installert for rensing av luften inne i tunnelen for å bedre sikten. Disse baserer seg på partikkelenring. Det dominerende prinsippet er elektrostatisk rensing (elektrofiltre), betegnet EPS.

De siste 5 til 10 år har gassrensing kommet inn som en tilleggsfunksjon. Det er da i hovedsak NO2 – fjerning som er målet. Prinsippet er her enten adsorpsjon knyttet til aktivt kull eller absorpsjon knyttet til potassium hydroxide. Aktivet kull synes å brukes av flest produsenter. For å hindre nedsmussing av gassfiltrene må luften først renses for partikler. Dette gjøres i elektrofiltre. Bruk av elektrofiltre genererer ozon. Ozonen reagerer med NO og det dannes mer NO2. Dette medfører at filterenhetene via NO2 prosessen også reduserer både NO- og NO2-nivået i luften.
Moderne vegtunneler: Tunneler og lokal luftkvalitet

5.4 Elektrostatisk filtrering (EPS)

En fordeling på partikelstørrelse og antall, samt typisk renseeffektivitet er vist i tabellen under.

Tabell Partikkelfordeling målt i en østerriksk tunnel, samt oppgitte renseeffekter (www.aigner.at)

<table>
<thead>
<tr>
<th>Partikkel størrelse</th>
<th>< 0,5 µm</th>
<th>0,5 - 1,0 µm</th>
<th>1,0 - 10 µm</th>
<th>> 10 µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antallet</td>
<td>95,3%</td>
<td>4,3%</td>
<td>0,4%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Massen</td>
<td>38,1%</td>
<td>9,0%</td>
<td>50,9%</td>
<td>2,1%</td>
</tr>
<tr>
<td>Renseeffekt</td>
<td>< 2,5 µm, 54 - 91%</td>
<td>2,5 - 10 µm, 94 - 99%</td>
<td>> 99%</td>
<td></td>
</tr>
</tbody>
</table>

Prinsippet for gassrensing er vist i figuren under.

![Elektrostatisk filtrering](www.aigner.at)

Figur 5-2 Elektrostatisk filtrering kan bygges opp i en serie av trinn. Her et flertrinnsprinsipp (www.aigner.at)

Målte virkningsgrader over tid er illustrert i figuren under og ligger fra 80 til godt over 90%.

Figur 5-3 Målte virkningsgrader ved halv og hel luftmengde (www.aigner.at)
Renseanlegg for trafikantene. Dvs. rensing av luften inne i tunnelen. Disse betyr behovet for frisklufttilførsel minsker, og tunnelene kan f.eks. bygges lengre. Anleggene plasseres da inne i tunnelen normalt i en paralleltunnel (’by-pass tunnel’), se figur under. Løsningen har vært typisk i Norge.

![Figur 5-4 By-pass tunnel for plassering av reneanlegg. Typisk lengde vil være 150 m med et tverrsnitt 50 m² for behandling av 200 til 250 m³/s luft. (www.cta.no).](image)

Rensestasjoner for plassering i henget har vært typisk for en behandling av en delmengde luft i tunnelen, se figuren under. I Norge ble løsningen benyttet i Helltunnelen/Sør-Trøndelag og i Strømsåstunnelen/Drammen.

![Figur 5-5 Rensestasjoner plassert i henget er lite benyttet (CETU).](image)

Figur 5-6 Luftrenseanlegg har betydelig størrelse, her lagt inntil en to-felts enveiskjørt tunnel. Utslipp skjer fra det lave tårnet (til høyre) (www.aigner.at).

Størrelsen på rensestasjonen bestemmes av luftmengden som skal behandles. Normalt vil denne være gitt av begrensnings i tunnelens ventilasjonshastighet og tverrsnitt, dvs. antall kjørebaner. I tillegg avgjør tillatt tverrsnitthastighet gjennom filterne størrelsen. Økende hastighet svekker normalt virkningsgraden av filterne. Typisk har fabrikantene lagt seg på fra ca. 5 m/s (Østerrike) og opp til 9 til 13 m/s (Japan).

Typiske trykkfall gjennom selve filterenheten ligger på 200 til 300 Pa.
5.5 Gassrensing

- NO₂: 80 til 90%
- NOx: 70%
- Hydrocarboner: 50 - 95% avhengig av type HC
- Ozon: 90%

Lufthastigheten gjennom gassfiltreringsdelen ligger omkring 1 m/s og filterne legges derfor i ‘W-form’, se figuren nedenfor.

Trykktapet gjennom selve filterdelene ligger på 250 til 500 Pa, slik at det er viftenergien som dominerer energiforbruket ved filterinstallasjon og ikke strømmen til drift av filteret (ionifiseringen). Dette gjelder både partikkelfiltere og gassfiltere.

5.6 Styring av ventilasjon

Generelt sett vil styringen av renseanlegg følge det samme prinsippet som styring av luftetårn. Statens vegvesen, Region vest, har utarbeidet en rapport hvor de har sett på luftforurensning i tunneler, ventilasjonskapasitet og styring. Det generelle inntrykket er at luftkvaliteten er bra, men at mange funksjonsfeil på måleinstrumenter og varslingssystemer utløser alarm til vegtrafikksentralen (VTS). De fleste tunnelene har god ventilasjonskapasitet, men styringen er i mange tilfeller tilpasset en gammel bilpark hvor CO-gass var dimensjonerende for tunnelventilasjonen. I dag er NO₂ den gassen som det er nødvendig å måle på for kontroll av luftkvaliteten i tunnelene.

Det siste halvåret har VTS mottatt 252alarmer om høyt gassnivå i 20 ulike tunneler i region vest. I noen tilfeller skyldes dette at ventilasjonskapasiteten er for liten i forhold til trafikken, men i de fleste tilfeller er det styringen av viitene som har sviktet.

Fram til ca. 2004 var det vanlig med måleområde 0 – 300 ppm for CO-sensorene i tunnelene. En del av de eldste CO-målerene viser i dag derfor null ved CO-nivå under 4 - 5 ppm. De nye CO- og NO-sensorene med måleområde under 50 ppm, gir gode målinger helt ned mot null (Polytron 2 og Polytron 7000). De nyeste NO₂-sensorene gir brukbare verdier ned mot 0,2 ppm. (Polytron 7000).

Måleområde for gass-sensorer i tunneler:
- CO: 0 – 50 ppm
- NO: 0 – 50 ppm
- NO₂: 0 – 15 ppm

Rapporten henviser ellers til de nyeste kravene fra mars 2010 i HB021 for krav til luftkvalitet og ventilasjon, dimensjonerende konsentralisering og styring av tunneler.
5.7 Norske erfaringer

Sammendrag
De norske erfaringene, slik de ble oppsummert i 2005, er i rimelig overenstemmelse med de man trekker internasjonalt fem år seinere. Riktignok er det tydelige tekniske driftsproblemer knyttet til de anlegg man hadde i Norge. Men samlet usikkerhet knyttet til om det var en riktig teknisk – økonomisk løsning var den samme som i dag. I dag er konklusjonen mer av økonomisk art, mens begrunnelsen tidligere var mer funksjonalitetsmessig begrunnet. Dette all den tid det forventes tross all usikkerheten en sterk reduksjon i framtidig kjøretøyers emisjoner. Sammendraget (Myran 2005) er gjengitt under.

Detaljene
De undersøkelser som er foretatt på elektrofilter (både i lab og felt) viser at virkningsgraden under ideelle forhold generelt er god (86 – 99 %) over korte måleperioder der spenning konstant er påsatt. I praksis har det vist seg at anleggene har hatt en del ulemper både når det gjelder konstruksjon, plassering og drift som har bidratt til at den reelle virkningsgraden over tid har vært til dels betydelig lavere. Årsakene til dette er omtalt i notatet, og har sammenheng med bl.a.:

- utfall av spenning på grunn av overslag,
- strømningstekniske forhold,
- stempeleffekter fra tunge kjøretøy,
- for høy stovlast på anlegget før vasking foretas,
- luftstrøm over renseanlegget når dette er avslått (resulterer i at stov rives løs fra elektrofilteret).

Dersom ikke fullstendig lukkes/stenges fysisk for luftgjennomstrømning er det ved flere anlegg påvist at man oppmagasinering av stov (stoffdepot) mellom elektrofilter og etterfilter, og også etter etterfilteret.

I Ekebergtunnelen er det etter mange års drift av renseanlegget ikke påvist at stov er avsatt i slamtankene (silotanker for vaskevann). Heller ikke ble ved en analyse funnet slam i vannprøvene fra slamtankene. Årsaken til dette er ikke klarlagt. Men det antas at stov avsatt i forfilter, elektrostatfilter og etterfilter på grunn av en kontinuerlig luftstrøm over anlegget, også når anlegget står (uten spenning), rives løs og deponeres etter renseanlegget eller fortsetter som luftbåret støv ut av tunnelen.

Det må understrekes at dette notatet er basert på undersøkelser og erfaringer fra drift av renseanlegg for partikler i norske vegtunneler helt tilbake til 1990. Mange av de praktiske årsakene til at et flertall av disse anlegg har hatt lavere virkningsgrader enn antatt, og senere satt ut av drift, er identifisert. Bruk og drift av denne type anlegg for å redusere partikkelbelastning både for mennesker og miljø, vil henge nøye sammen med hvorvidt helse- og miljøgevinsten står i et rimelig forhold til de meget betydelige kapital- og driftskostnader slike anlegg krever.
7 REFERANSEN

(AECC 2006, Regulated and non-regulated emissions from modern European passenger cars/ Bosteel, D; May, J Assosiation for Emissions Control by Catalyst; Begium; Karlsson, H;de Serves, C ALV Motortestcenter AB, Sverige).

Beynyamine, M (2011) 'Riktvärden/gränsevärden tunnelluft' Trafikverket/Sverige

bHr ' (2011) Aerodynamics and Ventilation of Tunnels’ 14th Int'l Symposium Dundee/ Scotland 2011

Katatani, A (2011); Dix; A bHr-symposium, Dundee 2011 Ventilation and exhaust purification of motor vehicle tunnels in Japan

Lotsberg, G (2011). Kommunikasjon i forbindelse med Statens vegvesens pågående målinger av NO2 i tunneler

NILU (2011) Notat Beregninger av NO2 for Oslo og Bærum i 2010 og 2025, Sundvor; Tønnesen et al

Myran, T (2005) 'Erfaringer fra luftrenseanlegg i veggunneler', notat/ Vegdirektoratet

PIARC 2011 (a) 'Road tunnels: Operational strategies for emergency ventilation'

PIARC 2011(b) 'Road tunnels: Vehicle emissions and air demand for ventilation'

Statens vegvesen, Region vest. Luftkvalitet i 60 tunnelar i mars 2010. Kommentar til ventilasjonskapasitet og styring, 2010

Sturm; P (2011) Private communications/ Univ of Graz/Østerrike

Sturm, P et al (2011) 'Upgrading long traffic tunnels for fulfilling the EU requirements' ITS conference Bergen/Vegdirektoratet

Statens vegvesen 2010 'Tiltaksutredning for luftkvalitet i Oslo og bærum kommune.

"Veidekker: Svevestøv og helse" (Rapport 2004:4). Marit Låg, Tom Myran, Magne Refsnes, Per E. Schwarze og Johan Ørvvik, Vegdirektoratet
8 APPENDIKS 1: TRAFIKKEN SOM BELASTNING

Tiltak baseres på forholdet mellom krav og belastning. En viktig del av belastningen er:
- Trafikkmengden; dvs. trafikkarbeidet
- Andeler og fordeling av kjøretøy mellom diesel og bensin
- Emisjon fra eksisterende og nye biler, fornyelse av kjøretøyparken
- Kjøremønster

8.1 Trafikkarbeidet

Vegtraffikkens samlede trafikkarbeid utvikler seg samlet nokså lineært, se figur under. Den varierer imidlertid betydelig mellom de forskjellige kategorier kjøretøy.

Man kan kanskje spore en svak tendens til reduksjon i trafikkveksten. For 2010 økte trafikkarbeidet med 1,1% hvorav lette kjøretøy økte med 1%, mens tendensen for tunge er nær det dobbelte (1,9%) i følge Vegtrafikkindeksen 2010 (Statens vegvesen). Dette er noe mindre enn gjennomsnittet for 1979-2009. Figur 8-1 er splittet i lette og tunge kjøretøy. Lette omfatter typisk personbiler, samt motorsyklar som utgjør et neglisjebart omfang, og tunge som inkluderer godstransport og busser.
9 APPENDIKS 2: EMISJONENE FRA DET ENKELTE KJØRETØY

9.1 Euro 4, 5 og 6

Internasjonale krav har medført en vesentlig skjerpelse knyttet til utslipp fra kjøretøy. De største forventede reduksjonene knyttes til Euro 6, som innføres fra 2014. Tabellen for tunge nye kjøretøy ses nedenfor. NOX viser at tillatt maksutslipp reduseres til én femtedel (80% reduksjon).

Tabell 9-1 Grenseverdier for emisjon fra tunge kjøretøy (g/kWh) gitt av Euro-kravene (‘Ruß’ er sot).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HC</td>
<td>2,60</td>
<td>1,23</td>
<td>1,10</td>
<td>0,66</td>
<td>0,46</td>
<td>0,46</td>
<td>0,13</td>
</tr>
<tr>
<td>CO</td>
<td>12,30</td>
<td>4,90</td>
<td>4,00</td>
<td>2,10</td>
<td>1,50</td>
<td>1,50</td>
<td>1,50</td>
</tr>
<tr>
<td>NOX</td>
<td>15,80</td>
<td>9,00</td>
<td>7,00</td>
<td>5,00</td>
<td>3,50</td>
<td>2,00</td>
<td>0,40</td>
</tr>
<tr>
<td>Ruß</td>
<td>-</td>
<td>0,40</td>
<td>0,15</td>
<td>0,10</td>
<td>0,03</td>
<td>0,03</td>
<td>0,01</td>
</tr>
</tbody>
</table>

9.2 Piarc emisjonsframskrivning

Piarc (World Road association) har kommet med en ny versjon av deres håndbok om emisjoner og ventilasjonsbehov (Piarc 2011b). Det er vesentlige endringer ift. versjonen fra 2004. Piarc sier at det erstatter versjonen fra 2004 fullt ut og understreker i sammendraget at det anbefales sterkt å bruke denne rapporten for å beregne friskluftsbehovet i vegtunneler. Det regnes med betydelige reduksjoner i utslippene framover. For 2025 regner Piarc med at:

1. CO-emisjonene i 2025 er under 50% av dagens nivå
2. Sot-emisjonen i 2025 ligger under 20% av dagens nivå.
3. NOX-emisjonen i 2025 ligger under 40% av dagens nivå.

For beregninger av emisjoner ifra trafikken i tunneler bør man vente seg en betydelig framtidig redusert emisjon. Nærmere 30% fram til 2025.

Figur 9-1 Forventet utvikling av relative emisjoner fra kjøretøy basert på estimert blanding av lette (bensin og diesel, Piarc table 17) og tunge kjøretøy (diesel, Piarc table 22) (Piarc 2011b)
Tallene for Piarc’s emisjonsframskrivning er gjengitt i direkte tabellform under.

Tabell 9-2: Framskrivning i form av emisjonsfaktorer for kjøretøy (Piarc 2011a)

<table>
<thead>
<tr>
<th>År</th>
<th>CO</th>
<th>NOx</th>
<th>Opacity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>passenger cars</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gasoline</td>
<td>diesel</td>
<td>gasoline</td>
</tr>
<tr>
<td>2010</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>2015</td>
<td>0.75</td>
<td>0.74</td>
<td>0.65</td>
</tr>
<tr>
<td>2020</td>
<td>0.58</td>
<td>0.65</td>
<td>0.44</td>
</tr>
<tr>
<td>2025</td>
<td>0.46</td>
<td>0.60</td>
<td>0.30</td>
</tr>
<tr>
<td>2030</td>
<td>0.40</td>
<td>0.57</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Det understrekes at de angitte tallene fra Piarc er oppgitt ut fra NOₓ (g/km pr kjøretøy) og ikke NO₂. Utviklingen for andel NO₂ for NOₓ er usikkert, men anslås av Piarc (2011b) å gå fra ca. 10 % i 2010 til mellom 20 og 30 % etter 2015. For å knytte effektene til NO₂ generering som er noenlunde sammenlignbart med NILU, er det benyttet estimator basert på 40 vekt-% NO₂, noe som tilsvarer ca. 30 volum-% NO₂.

9.3 Danmarks miljøundersøkelse – DMU

Moderne vegtunneler: Tunneler og lokal luftkvalitet

Figur 9-2: Framskrevet utslippsfaktor for NO\textsubscript{2} for ulike kjøretøy i Danmark. (Exarchakos, Tabarra, Abi-Zadeh, & Treldal, 2011)

DMUs prognoser for antall dieselkjøretøy i Danmark lander på ca. 60 % diesel personbiler etter 2020. Dette er vist i Tabell 9-3. For Norge forventer NILU 72 % lette dieselbiler i 2025 (NILU 2011). NILU forventer at den økningen i antall lette dieselbiler man har sett til nå vil fortsette. Dette er spesielt for Norge.

Tabell 9-3: Andel dieselkjøretøy og El-biler som ligger til grunn for utslippsfaktorene fra DMU. (Exarchakos, Tabarra, Abi-Zadeh, & Treldal, 2011)

<table>
<thead>
<tr>
<th>Andel dieselkjøretøy [%]</th>
<th>År</th>
<th>2018</th>
<th>2025</th>
<th>2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biler</td>
<td></td>
<td>58,0</td>
<td>59,4</td>
<td>61,4</td>
</tr>
<tr>
<td>Varebiler</td>
<td></td>
<td>93,0</td>
<td>93,7</td>
<td>94,7</td>
</tr>
<tr>
<td>Lastebiler og busser</td>
<td></td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Exarchakos et al konkluderer i sin undersøkelse med at utslippene av NO\textsubscript{2} og partikler (PM\textsubscript{2,5}) reduseres med ulik hastighet over tid. I de nærmeste årene vil det være utslippet av NO\textsubscript{2} som vil være dimensjonerende for friskluftsbehovet for en tunnel. Etter hvert vil den forventede utviklingen i motorteknologi medføre lavere utslipp av NO\textsubscript{2} og det vil være utslippet og oppvirvling av partikler som vil være dominerende forurensningskomponent.

Det er noe forskjell mellom dansk og norsk bilpark. Danskene har en noe yngre bilpark og forventer ikke den samme økningen i antall lette dieselbiler. I undersøkelsen er det forutsatt en mye lavere andel NO\textsubscript{2} for NO\textsubscript{x} for framtidige NO\textsubscript{x}-konsentrasjoner enn det NILU har kommet fram til.

De danske tallene er langt mer optimistiske med hensyn på framtidig reduksjon av utslippene enn de norske tallene fra NILU. Både de danske tallene og resultatene fra NILUs beregninger gjelder i områder der kjørebanen er rimelig flat (stigning innenfor ± 3%). Samlede norske tall kan forventes i snitt å ligge høyere enn dette på grunn av andelen veger med vesentlig mer stigning. Ut fra stigning bør vi forvente snittall mellom 10 og 30 % høyere, ref. til emisjonsøkninger gitt i HB021.

9.4 Testkjøring med alternative målesyklar

Standard kjøresyklus for test av emisjonsrater i forhold til EURO-kravene synes å være for lite realistisk i forhold til reel kjøring. For Euro-godkjenning benyttes NEDC. De nye mer realistiske Artemis-testene deles opp i tett bykjøring (‘urban’), bykjøring i mindre tett strøk (‘extra-urban’) og landeveiskjøring (‘highway’). Teststandardene NEDC og Artemis er vist i Figur 9-3 som kjøreastigtsvariasjoner over tid.
Figur 9-3: Teststandarder vist som kjøre hastighetsvariasjoner over ca. 1000 s (vel 15 minutter)

NEDC har langt mindre hastighetsvariasjoner (bremsing og akselerasjon) og tilsvarende lavere emisjoner.

Eksempler fra emisjonstest av fire forskjellige lette kjøretøy som er kjørt gjennom de forskjellige testene framgår av Figur 9-4 (AECC 2006). Det er testet en bensinbil og tre biler med forskjellig former for diesel og partikkelfiltrering. Når det gjelder detaljer, vises det til paperet (AECC 2006); May, J Association for Emissions Control by Catalyst; Begium; Karlsson, H; de Serves, ALV Motortestcenter AB, Sverige).
Moderne vegtunneler: Tunneler og lokal luftkvalitet

Emisjonsgrensene for Euro 4 er plottet i figuren. Det framgår at alle bilene ligger innenfor Euro 4 standarden, mens det kun er bensinbilen som tilfredsstiller emisjonsratene under Artemis-kjøringene. Dieselbilene ligger til dels meget høyt over.

Figur 9-4: Emisjonsmålinger varierer sterkt mht valgt kjøresyklus. Eurotest kjøresyklus (NEDC) vist sammenlignet med de mer realistiske Artemis-testene som er mer spesifikt delt i bykjøring, tett bykjøring og landeveiskjøring.

9.5 Spredningsberegninger for NO2 i Oslo og Bærum, NILU 2011

NILU har på oppdrag fra Astma- og allergiforbundet utført spredningsberegninger for NO2 i Oslo og Bærum. Det er sett på effekten av utslipp i reell kjøresyklus for kjøretøyene kombinert med en konservativ antagelse for utslippet basert på tilgjengelig ny informasjon. Beregninger er gjort for to år; 2010 og en framskrivning til 2025.

Undersøkelsen oppsummerer med at Oslo har hatt overskridelser av grenseverdiene for lokal luftkvalitet for NO2 både for timemiddel og årsjennomsnitt ved de fleste stasjonene de siste årene. Nivåene for PM10 har gått ned i Oslo de siste årene etter flere tiltak rettet mot svevestøv. Trenden for NO2 viser ingen slik nedgang men snarere et mer stabilt nivå, (Oppegård 2010).

Nye målinger av utslipp av NOx og av andelen NO2 fra biler viser stort sprøk i utslippene avhengig av kjøresyklus(Alvarez et al, 2008). Generelt viser målereultatene at bensinbiler har mye lavere utslipp av NOx og NO2 enn dieselbiler i samme EURO klasse. Utslippene for dieselbilene ligger mye høyere enn kravspesifikasjonen når andre kjøresykluser blir brukt. Det viser seg også at andelen NO2 for NOx -utslippet er høyere og at denne andelen har økt for nye EURO klasser til tross for lavere krav.

Emisjonsfaktorene for EURO-kravene, de etablerte utslippsfaktorene og de nye utslippsfaktorene for reell kjøresyklus som NILU har benyttet i beregningene er gitt i tabellene nedenfor (verdiene i tabellen for reell kjøresyklus ble justert av Dag Tønnessen i møte 17. august 2011).

Tabell 9-4: Kravspesifikasjonene for utslipp av NOx, Enhet i g/km

<table>
<thead>
<tr>
<th>Euroklasse</th>
<th>Bensin</th>
<th>Diesel</th>
</tr>
</thead>
<tbody>
<tr>
<td>EURO 4</td>
<td>0,08</td>
<td>0,25</td>
</tr>
</tbody>
</table>
EURO 5 | 0,06 | 0,18
EURO 6 | 0,06 | 0,08

Tabell 9-5: Utslippsfaktorer for NOx brukt i basisberegningene, fra etablerte utslippsfaktorer. Enhet i g/km (NILU 2011)

<table>
<thead>
<tr>
<th>Euroklasse</th>
<th>Bensin</th>
<th>% NO₂</th>
<th>Diesel</th>
<th>% NO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>EURO 4</td>
<td>0,032</td>
<td>5</td>
<td>0,075</td>
<td>30</td>
</tr>
<tr>
<td>EURO 5</td>
<td>0,028</td>
<td>5</td>
<td>0,054</td>
<td>30</td>
</tr>
<tr>
<td>EURO 6</td>
<td>0,024</td>
<td>5</td>
<td>0,024</td>
<td>30</td>
</tr>
</tbody>
</table>

Tabell 9-6: Utslippsfaktorer for NOx brukt i scenario 1 beregningene, basert på reell kjøresyklus. Enhet i g/km (NILU 2011)

<table>
<thead>
<tr>
<th>Euroklasse</th>
<th>Bensin</th>
<th>% NO₂</th>
<th>Diesel</th>
<th>% NO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>EURO 4</td>
<td>0,032</td>
<td>10</td>
<td>0,65</td>
<td>30</td>
</tr>
<tr>
<td>EURO 5</td>
<td>0,028</td>
<td>10</td>
<td>0,60</td>
<td>40</td>
</tr>
<tr>
<td>EURO 6</td>
<td>0,024</td>
<td>10</td>
<td>0,50</td>
<td>50</td>
</tr>
</tbody>
</table>

Tabellene viser at utslippsfaktorene for reell kjøresyklus for dieselbiler er langt høyere enn tidligere etablerte utslippsfaktorer samt EURO-kravene.

Dieselandelen har økt voldsomt de siste årene og forventes å fortsatt stige til over 70 % i 2025. Det er spesielt for Norge at vi har en så stor andel lette diesellokjøretøy.

NILU konkluderer med at en justering av utslippsfaktorene til reell kjøresyklus gir noe økte NO₂ - konsentrasjoner for 2010 beregningen og en kraftig økning for 2025. Beregningene viser at hvis trenden med høy andel nye dieselbiler fortsetter, vil NO₂ -bidraget fra personbiler øke. For utslipp fra reell kjøresyklus viser beregningene for 2025 at store deler av Oslo sentrum vil ha årgjennomsnitt over grenseverdien. Så selv om størsteparten av bilene er EURO 5 og EURO 6 i 2025 løser ikke det forurensningsproblemet.

For alle scenariøene som NILU beregnet for ble det funnet overskridelser av grenseverdiene. Det er derfor lite sannsynlig at grenseverdiene vil bli overholdt i fremtiden hvis ikke flere tiltak for å begrense utslipp av NO₂ blir iverksatt.

Det vil alltid være stor usikkerhet i alle framskrivninger av utslippsfaktorer og sammensetningen av bilparken, men for beregninger knyttet til norske tunneler kan man med fordel vurdere å benytte utslippsfaktorene fra NILU. Alternativt kan man benytte emisjonstallene i HB021 (2010) uten å nedjustere faktorene. NILUS forventer til andel NO₂ for NOₓ bør tas med i beregninger etter HB021. HB021 baserer seg på 10 % NO₂. Konsentrasjonen for NOₓ bør justeres som beskrevet i HB021.
9.6 Utslipp av NO$_2$ for tunge kjøretøy

For å vurdere NO$_2$-utslippet fra tunge kjøretøy er det sett på utslippsfaktorene fra Piarc og HB021. Det er tatt utgangspunkt i 40 vekt-% NO$_2$ etter anbefaling fra NILU. Piarc's utslippsfaktorer ligger ca. 30 % under HB021. Forskjellen mellom Piarc og HB021 er vist i figuren under. Ved framskrivning av tallene med Piarc's faktorer (Tabell 9-2) blir Piarc's utslippsfaktorer liggende langt under faktorene i HB021 (ca. % under). Dette betyr at ved å beholde utslippsfaktorene i HB021 ved en framskrivning for NO$_2$, vil man få et konservativt anslag for framtidige emisjoner.

Ser man på dagens tall ligger Piarc høyere enn HB021. Men Piarc estimerer en optimistisk reduksjon i NOx-utslippet på ca. 80 % for tunge kjøretøy.

For framskrevne beregninger for NO$_2$-utslipp fra tunge kjøretøy kan det velges å følge estimatet Piarc. Dette betyr en reduksjon på ca 80 % for tunge kjøretøy. Som basis kan man ta utgangspunkt i HB021 eller Piarc's utslippsfaktorer for tunge kjøretøy. HB021 er noe mer konservativ enn Piarc for dagens situasjon.

![Diagram](image)

Figur 9-5: Piarc-tallene for tunge kjøretøy ligger ca. 30 % under HB021. Tallene baseres på 40 vekt-% NO$_2$.

9.7 SSBs nasjonale modell for framskrivning av vegtrafikkutslipp

9.8 Luftkvalitet i 60 tunneler i mars 2010

Statens vegvesen, Region vest, har utarbeidet en rapport hvor de har sett på luftforurensning i tunneler, ventilasjonskapasitet og styring. Det generelle inntykket er at luftkvaliteten er bra, men at mange funksjonsfeil på måleinstrumenter og varslingsystemer utloser alarm til vegtrafikkcentralen. De fleste tunnelene har god ventilasjonskapasitet, men styringen er i mange tilfeller tilpasset en gammel bilpark hvor CO-gass var dimensjonerende for tunnelventilasjonen. I dag er NO$_2$ den gassen som det er nødvendig å måle på for kontroll av luftkvaliteten i tunnelene.
I rapporten blir forholdet mellom NO og NO₂ i tunnelluften vurdert ut fra målinger i flere tunneler. I luft med normalt trykk og temperatur, går NO-gassen gradvis over til NO₂. Denne reaksjonen går mye raskere ved et høyt nivå av NO i en tunnel enn i friluft. For å unngå stor produksjon av NO₂ i en tunnel med over to timer utluftingstid, bør ikke nivået av NO midt i tunnelen overstige 5 ppm. Halveringstiden for 5 ppm NO er omtrent 12 timer. I kortere tunneler med utluftingstid på mindre enn en time kan det aksepteres litt høyere nivå av NO. Dersom NO-konsentrasjonen i en tunnel kommer over 10-15 ppm, får man en svært rask utvikling av NO₂ inne i tunnelen.

Kravet til lokal luftkvalitet i forurensningsforskriften for NO₂ er 200 µg/m³ og luft med NO₂-konsentrasjon over dette blir vurdert som svært dårlig utendørs luftkvalitet. Dette tilsvarer 0,13 ppm NO₂, som er under 10 % av grenseverdien for luftkvalitet, som er 1,5 ppm NO₂ angitt av HB021 for tunneler.

9.9 Konklusjon

Tester viser at emisjonsrater forbundet med mer realistisk kjøring ligger vesentlig over utslippene ved testing og godkjenning etter EURO-kravene. Dette har vært kjent i mange år (ref. AECC 2006). Det forventes at Piarc nye data tar hensyn til disse forholdene.

NILU har beregnet konsentrasjonene av NO₂ i Oslo og Bærum blant annet basert på utslipp i reell kjøresyklus for kjøretøyene kombinert med en konservativ antagelse for utslippet basert på nye estimater av utslippstill for NO₂. Beregningene er gjort for to år; 2010 og en framskrivning til 2025. For alle scenariene som NILU beregnet for, ble det funnet overskridelser av grenseverdiene. Det er derfor ikke sannsynlig at grenseverdiene vil bli overholdt i fremtiden hvis ikke flere tiltak for å begrense utslipp av NO₂ blir iverksatt.

Samtaler med Statens vegvesen bekrefter at forholdene knyttet særlig til lette kjøretøy er vanskelig. Den sterke trenden til reduserte utslipp synes å ha stoppet opp. Det er særlig bekymring for kaldstart, og motorer som stanses ved kjøring i utforbacker og ved stanser som er av varighet mer enn 15 til 20 minutter. Et større måleopplegg er igangsatt, og de første målinger ventes ultimo september i år (Lotsberg 2011).

Det vil alltid være stor usikkerhet i alle framskrivninger av utslippsfaktorer og sammensetningen av bilparken, men for beregninger knyttet til norske tunneler kan man med fordel benytte utslippsfaktorene fra NILU for lette kjøretøy. Alternativt kan man benytte emisjonstallene i HB021 (2010) uten å nedjustere faktorene. NILUS forventinger til andel NO₂ for NOₓ bør tas med i beregninger etter HB021. HB021 baserer seg på 10 % NO₂. Konsentrasjonen for NOₓ bør justeres som beskrevet i HB021. For framskrevne beregninger for NO₂-utslipp fra tunge kjøretøy kan det velges å følge estimatet Piarc. Dette betyr en reduksjon på ca 80 % for tunge kjøretøy. Som basis kan man ta utgangspunkt i HB021 eller Piarcus utslippsfaktorer for tunge kjøretøy. HB021 er noe mer konservativ enn Piarc for dagens situasjon.
10 APPENDIKS 3: PARTIKLER - SIKT

10.1 Miljøvennlige vegdekker

![SIKT FRAMSKRIVING ÅRENE 2010 til 2030](image)

Figur 10-1 Støv og sikt. Utvikling for lette kjøretøy (i forventet blanding av bensin og diesel) (Piarc 2011b)

10.2 Statusrapport på støv for Norge, Sverige og Finland

Utslipp fra vegtrafikk og oppvirvling av vegstøv skjer nær bakkenivå og med svært lav vertikalhastighet. Spredningen av utslippene er dermed avhengig av de til enhver tid rådende vindforhold og utlufting langs vegene. I byområder er spredningsforholdene ofte dårlig langs vegene. Utslippet fra Statistisk sentralbyrå og Statens forurensningstilsyn viser at vegtrafikken slipper ut om lag 21% av totalt PM10-utslipp hvert år. I tillegg kommer oppvirvling av vegstøv som alene er like stort som eksosutslipp fra lette kjøretøy (Svv 2006).

Tiltak som har vært viktige for nedgang i PM10:

- Fyring:
 - elektrisitet som oppvarming
 - utbygging av fjernvarmenett
 - miljøgater
Trafikk:
- satsning på kollektivtransport
- avgasskrav til kjøretøy
- tunneler (hindrer spredning av PM$_{10}$, og luftrenseanlegg fjerner partikler)
- overgang til miljøpigg og piggfrie vinterdekk

Trafikkstyring:
- trafikkstyring, bl.a. med bomring
- avgift på bruk av piggdekk og kortere pigdegkkesesong
- redusert hastighet i sentrumsområder (medfører reduert oppvirvling og slitasje)

Renhold:
- støvbinding og hyppigere og tidligere rengjøring av vegene og tunneler i store byer
- mindre bruk av strømidler, og bruk av vasket sand i stedet for uvasket
- mer slitesterke vegdekker og bruk av sterkere steinmaterialer

Enkelte år med lave konsentrasjoner og få overskridelser av grenseverdier og retningslinjer kan imidlertid også ha sammenheng med "gunstig" meteorologi, dvs. milde, fuktige vintrer med mye vind og gode spredningsforhold. De meteorologiske forholdene er viktige for hvordan forurensninger spres eller akkumuleres, og derfor er det store variasjoner i konsentrasjonsnivåer og antall overskridelser fra år til år selv om utslippene ikke endres i nevneverdig grad.

Dannelse av vegstøv (PM$_{10}$) er avhengig av trafikkvolum, hastighet, asfaltens slitestyrke og hvor stor andel av bilparken som bruker piggdekk. Det er flere faktorer som har betydning for hvor mye et utslipp bidrar til konsentrasjon enn utslippsmengde per år. De viktigste er:
- hvor utslippskilden er plassert i forhold til lokal topografi, lokale luftstrømmer/luftutskiftning og vegetasjon
- tid på døgnet når utslippet skjer
- hvor høyt over bakkenivå utslippet skjer
- vertikal hastighet på luftstrømmen

10.3 Måleundersøkelser
Samlet tilsier både vegdekke, kjørehaustighet og tunneler med møtende trafikk kan representere et spesielt støvproblem med gjenlegging av større mengder støv ift. på tradisjonell veg. Dette kan medføre at den lokale støvbelastningen øker og ha andre karakteristika enn f.eks NO$_x$.

Slitasjetester fra veegsimulator viser at kjørehaustighet har en stor innflytelse på støvproduksjonen. Hastigheten viser en god overenstemmelse med eksperimenter fra Oslo der hastighetsgrensen om vinteren nedsettes fra 80 til 60 km/t på utvalgte vegstrek. ("Pavement wear and airborne dust pollution in Norway. Characterization of physical and chemical properties of dust particles" Brynhild Snilsberg/ dr.ing , NTNU
10.4 Støvdempende tiltak

Støvdempende tiltak er aktuelt i perioder med tørt vær (Statens vegvesen 2010). Dette skjer 2 til 3 ganger pr. uke i perioden november til ut april. Forsøk er utført i Oslo i kombinasjon med mekaisk rengjøring i form av børsting som suger opp grovere vegstøv. Gjenværende partikler bindes med magnesiumkloridoppløsning (15% MgCl).

Forsøk med kosting og vasking viste ingen tydelig effekt, mens effekten av støvdemping var betydelig. Reduksjonen av grovfraksjon PM\textsubscript{10} - PM\textsubscript{2,5} ble estimert til 70\%, mens PM\textsubscript{2,5} var knapt signifikant med sine 17\% reduksjon. Det er antatt at effekten på vegbanen utenfor tunnel er lavere.

Magnesiumklorid gjør vegbanen glatt og bør legges på kanter og sideareal. Den beste løsningen ventes ved feiring rett etter støvbinndende middel er påført.
11 APPENDIKS 4: HELSEEFFEKTER FRA VEGTRAFFIKK

11.1 Sammendrag

Folkehelseinstituttet har sammen med Trafikkøkonomisk institutt og Klif utarbeidet en rapport om helseskadelige effekter av luftforurensning (TA-2251/07) (Klima og forurensningsdirektoratet, 2007). I henhold til rapporten viser overvåkningen av luftforurensningen i norske byer at mange mennesker fortsatt er utsatt for nivåer som er over grenseverdiene i forurensningsloven og nasjonale mål.

Studien viser i tillegg at luftforurensning utfører helseeffekter ved lavere konsentrasjoner enn grenseverdiene og de nasjonale målene. Den relative risikoen ved eksponering for luftforurensning er liten, men store deler av befolkningen utsetter for forurensning over bakgrunnsnivå. Det medfører betydelige helseeffekter i befolkningen. Norske og øvrige europeiske studier viser også en sammenheng mellom konsentrasjonene av luftforurensning og graden av selvrapporert plage i befolkningen. Omfanget av helseskader og plager på grunn av svevestøv og annen luftforurensning i norske byer og tettsteder er så stort at videre tiltak er påkrevd for å reducere nivåene.

11.2 Svevestøv

Svevestøv består av en kompleks blanding av partikler av ulik størrelse og kjemisk sammensetning. Trafikk og vedfyring er de viktigste lokalene kildene for de små forbrenningspartiklene (<2,5 µm, PM2.5). Veidekkslitasje er den viktigste kilden for større partikler (>2,5, grovfraksjon). Alle inhalerbare partikkelstørrelser har potensial til å forårsake helseskade.

Svevestøv består ofte av en partikkeltjenere, men kan ha bundet til seg ulike forbindelser som metaller og organiske miljøgifter (f.eks. PAH) og biologisk materiale som bakteriekomponenter og pollen. Helseeffektene av partikler skyldes trolig ikke enkeltkomponenter, men en kombinasjon av flere komponenter.

Folkehelseinstituttet informerer om at tilgjengelig kunnskap tyder på at eksponering for svevestøv har sammenheng med uønskede helsevirksomhetene selv ved relativt lave konsentrasjoner (Folkehelseinstituttet, 2011). Det foreligger nå data som tyder på at konsentrasjonen på PM10- partikler (over PM10) forekommer stort sett i øvre luftveier som nese, munn, svelg og ihuler. Mindre partikler har i langt større grad sammenheng med sykelighet i nedre luftveier og i områder der gassutvekslingen foregår.

Lavere konsentrasjoner av PM2,5 synes å forårsake høyere risiko for helseeffekter enn det man finner ved tilsvarende konsentrasjon av PM10. Virkninger av forholdsvis store partikler (over PM10) forekommer stort sett i øvre luftveier som nese, munn, svelg og ihuler. Mindre partikler har i langt større grad sammenheng med sykelighet i nedre luftveier og i områder der gassutvekslingen foregår.

Lavere konsentrasjoner av PM2,5 synes å forårsake høyere risiko for helseeffekter enn det man finner ved tilsvarende konsentrasjon av PM10. Det er svært sannsynlig at det er forskjeller mellom ulike typer partikler med hensyn til deres evne til å utløse helseeffekter, men her er kunnskapen mangelfull og videre forskning er nødvendig for å kunne vurdere hvilke typer partikler/partikkelegenskaper som er mest helseskadelige.
11.3 Dieseleksos

Ved fastsettelse av administrativ norm for dieselpartikler har Arbeidstilsynet vektlagt effekter på lungesystem og hjerte- og karsystem samt faren for kreft ved lang tids eksponering. Dieseleksos er ansett som mulig kreftfremkallende blant annet på grunn av mulig innhold av organiske forbindelser som PAH- og nitro-PAH, som er klassifisert som kreftfremkallende. Selv om det ikke er påvist noen klar dose-respons-sammenheng, er det antatt at dieseleksos, herunder dieselpartikler, kan forårsake kreft. (Arbeidstilsynet, 2009)

I kliniske forsøk er dieselpartikler vist å gi irritasjon og betennelsessymptomer i luftveiene hos friske frivillige forsøkspersoner. Eksponering for redusert lungefunksjon, lokal betennelse og overfølsomhet i lungene hos astmatikere. I tillegg er det påvist forverring av allergisymptomer ved eksponering og da spesielt for astma, men også for høysnue. Det er usikker om dieseleksospartikler øker forekomsten av allergi.

I dyreforsøk er det vist at dieseleksospartikler kan gi økt levrings av blodet og økt hjerterytme. Stort sett finner man milde responser og funksjonssendringer i hjertekarsystemet. Slike effekter kan likevel være med på å forklare den observerte sammenhengen mellom dødsfall av hjertekarsykdommer ved partikkelekspowering i befolkningsstudier. På dette området er det behov for mer kunnskap. (Refsnes, 2008)

11.4 Nitrogenoksidene

Forbrenning av drivstoff fører til utslipp av både nitrogenmonoksid (NO) og nitrogendioksid (NO₂) som samlet kalles for nitrogenoksidene eller NOₓ. Nitrogendioksid er en god indikator for trafikkrelatert luftforurensning.

I henhold til informasjon fra Folkehelseinstituttet vil 70-90 % av NO₂ bli absorbert i lungene ved inhalasjon. Eksponering for NO₂ fører til oksidasjon av fettsyre i cellmembranen, noe som kan utløse betennelsesreaksjoner samt celledød/skade i lungevevet. Både befolkningsundersøkelser, kontrollerte kliniske studier og dyrestudier er brukt for å utrede helseeffekter av kortvarig og langvarig eksponering for NO₂.

Sammenhengen mellom kortvarig eksponering for økte NO₂-nivåer og økt sykelighet er, etter justering for andre forurensningskomponenter, generelt svakere enn for dødelighet. Dataene er videre mindre overbevisende for sykehusinleggelser for hjertekarsykdommer enn for luftveissykdommer. Hos barn er det imidlertid sterkere holdepunkter enn hos voksne for at kortvarig NO₂-eksponering er assosiert med økt antall innleggelser for astma og akutte luftveissykdommer. Innleggelser for astma synes å øke med 2-3 % ved en økning i times-middel for NO₂ på omtrent 20 µg/m³.

Både tverrsnittsstudier og kohortestudier er blitt benyttet for å undersøke sammenhenger mellom langvarig eksponering for NO₂ og forekomst av astma, øvrige lunge- og luftveissykdommer og allergiske reaksjoner. Selv om det i flere studier er vist tilsynelatende sammenheng med forekomst av astma, bronkitt og lungefunksjon, har det vist seg svært vanskelig å justere for og utelukke at andre luftforurensningskomponenter kan være ansvarlig for disse effekterne. Det er derfor mulig at NO₂ fungerer som en indikator for andre luftforurensningskomponenter.

For vurdering av korttidseksponering over en time har Folkehelseinstituttet tatt utgangspunkt i kliniske forsøk hvor det vises at konsentrasjonen på 200 -560 µg/m³ kan utløse reduksjoner i lungefunksjon hos astmatikere med en mild eller moderat form for sykdom. Luftkvalitetsskriteriet på 100 µg/m³ har blitt fastsatt ved å bruke en usikkerhetsfaktor på 2 til 5. Denne verdien understøttes av befolkningsstudier som viser sammenhenger mellom timesmidler av NO₂ og økt forekomst av dødsfall, og i noe mindre grad sykelighet. Det er lagt mindre vekt på befolkningsstudier over et døgn, da disse dataene er mindre sterke. I 1992 ble det foreslått en verdi på 500 μg/m³ for 15 minutter midlingstid for å ivareta eksponeringsforhold i lange tunneler og tilsvarende. Denne verdien har Folkehelseinstituttet opprettholdt.
Det er mye større usikkerhet når det gjelder helseeffekter ved langvarig eksponering for NO₂. Dyreforskøk indikerer at NO₂ gir effekter, om enn først ved relativt høye konsentrasjoner. I befolkningsstudier av utelufteksponering mangler det fremdeles data som viser effekt av NO₂ uavhengig av andre effekter. For fastsettelse av et luftkvalitetskriterium for et halvt år har Folkehelseinstituttet derfor benyttet studier fra eksponering innendørs, selv om det heller ikke der helt kan utelukke at andre komponenter bidrar til sammenhengene i den studien. Ettersom nivåene av NO₂ viser størst økning i Norge i vinterhalvåret, har Folkehelseinstituttet foreslått en vinterhalvårsmiddelverdi for NO₂. (Folkehelseinstituttet, 2011)

11.5 Krav til luftkvalitet

11.5.1 Grenseverdier for lokal luftkvalitet

Gjeldende grenseverdi og nasjonale mål er utformet som "prosenttilverdier", det vil si at de angir et visst antall ganger pr. år der forurensningsnivået kan overstige en grense uten at grenseverdien/målet er overskredet. Eksempelvis vil da nasjonalt mål kunne utformes slik (NILU, 2000):

- Ikke flere enn 8 timeverdier av NO₂ over 150 µg/m³ i år 2010
- Ikke flere enn 7 døgnverdier av PM₁₀ over 50 µg/m³ i år 2010

Prosenttilverdiene beregnes ut fra en reduksjon i maksimalkonsentrasjonen.

Tabell 1 viser gjeldende grenseverdier for lokal luftkvalitet i forurensningsforskriften (kapittel 7), nasjonale mål og Klif og Folkehelseinstituttets anbefalte luftkvalitetskriterier.

<table>
<thead>
<tr>
<th>Krav og grenseverdi</th>
<th>NO₂ (µg/m³)</th>
<th>PM₁₀ (µg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Midlingstid: 1 time</td>
<td>Midlingstid: 1 døgn</td>
</tr>
<tr>
<td>Gjeldende grenseverdi forurensningsforskriften</td>
<td>200</td>
<td>50</td>
</tr>
<tr>
<td>Antall tillatte overskridelser årlig / innen år</td>
<td>18 / 2010</td>
<td>35 / 2005</td>
</tr>
<tr>
<td>Nasjonale mål</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>Antall tillatte overskridelser årlig</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Klifs og Folkehelseinstituttets anbefalte luftkvalitetskriterier</td>
<td>100</td>
<td>PM₁₀ 35</td>
</tr>
</tbody>
</table>

11.5.2 Luftkvalitet i arealplanlegging

Klif har utarbeidet forslag til nye planretningslinjer for luftkvalitet med krav til vurdering av lokal luftkvalitet i arealplanlegging. Luftkvalitet vil da måtte bli vektlagt på lik linje med støy i arealplanlegging.

Forslaget har vært på høring, men er foreløpig ikke vedtatt i miljøverndepartementet (MD). Det jobbes også med å få på plass hvilke modeller som skal benyttes for beregninger av luftforurensning fra vegtrafikk. Det endelige forslaget vil trolig medføre noen endringer i forhold til hvordan luftforurensning og luftkvalitet fra vegtrafikk beregnes og behandles i plansaker. Forslaget til anbefalte grenser og soneinndeling er vist i figuren nedenfor.

![Diagram av luftkvalitet og soneinndeling fra Klif](image)

Tabell 1: Anbefalte grenser for luftforurensning og kriterier for soneinndeling ved planlegging av ny virksomhet eller bebyggelse. Alle tall i µg/m³ (mikrogram/m³) luft.

<table>
<thead>
<tr>
<th>Komponent</th>
<th>Gul sone 1</th>
<th>Rød sone 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM₁₀</td>
<td>35 µg/m³ / døgn per år</td>
<td>70 µg/m³ / døgn per år</td>
</tr>
<tr>
<td>NO₂</td>
<td>40 µg/m³ vintermiddel 3</td>
<td>40 µg/m³ årsmiddel</td>
</tr>
<tr>
<td>Helserisiko</td>
<td>Personer med alvorlig luftveis- og hjertekarsykdom har økt risiko for forværring av sykdommen.</td>
<td>Personer med luftveis- og hjertekarsykdom har økt risiko for helseeffekter.</td>
</tr>
<tr>
<td></td>
<td>Friske personer vil sannsynligvis ikke ha helseeffekter.</td>
<td>Sårbare grupper, som barn og eldre, har økt risiko for sykdommer i luftveis- og hjertekarsystemet.</td>
</tr>
<tr>
<td></td>
<td>Personer med luftveis- og hjertekarsykdom har økt risiko for helseeffekter.</td>
<td>Friske personer har økt risiko for forbigående slimhinneirritasjon og ubehag</td>
</tr>
</tbody>
</table>

1 Bakgrunnskonsentrasjonen er inkludert i sonegrensene.
2 Gul sone for PM₁₀ har et stort konsentrasjonsspann. Det er derfor store forskjeller i helsekonsekvenser innad i sone. Det kan derfor være hensiktsmessig å ha en strengere vurdering av arealbruk og avbøtende tiltak desto nærmere kilden tillattet ligger.
3 Vintermiddel defineres som perioden fra 1 nov. til 30. april.

Figur 11-2: Forslag til anbefalte grenser for luftforurensning og kriterier for soneinndeling fra Klifs forslag til nye planretningslinjer for luftkvalitet. Kilde: Klif
11.5.1 Administrativ norm

Det er fastsatt administrative normer innhold av for kjemiske stoffer i arbeidsatmosfære. Normene er fastsatt ut i fra 40 timers arbeidsuke med 8 timers arbeidsdag 5 dager i uken. Normene er satt ut fra medisinske, tekniske og økonomiske vurderinger. Man må være klar over at selv om normene overholdes, er man ikke nødvendigvis sikret at helsemessige skader og ulemper ikke kan oppstå. Det kan være påkrevet med verneutstyr.

Administrativ norm for partikler, NO, NO₂ og CO er gitt i tabellen nedenfor.

Tabell 11-2: Administrative normer for forbindelser i eksosgass. (Arbeidstilsynet, 2009)

<table>
<thead>
<tr>
<th>Forbindelse</th>
<th>Administrativ norm, 8 timers arbeidsdag</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ppm</td>
</tr>
<tr>
<td>NO₂</td>
<td>0,6</td>
</tr>
<tr>
<td></td>
<td>(12 timer:0,36)</td>
</tr>
<tr>
<td>NO</td>
<td>25</td>
</tr>
<tr>
<td>CO</td>
<td>25</td>
</tr>
<tr>
<td>Svevestøv:</td>
<td></td>
</tr>
<tr>
<td>Dieselpartikler</td>
<td>-</td>
</tr>
<tr>
<td>Organisk støv</td>
<td>-</td>
</tr>
<tr>
<td>Kullstøv</td>
<td>-</td>
</tr>
<tr>
<td>Kvarts</td>
<td>-</td>
</tr>
</tbody>
</table>

11.5.2 Luftkvalitet i tunneler

Vegvesenets håndbok 021 angir de dimensjonerende konsentrasjonene og luftkvalitetsnivåene for NO₂, NO, CO og svevestøv for tunneler i Norge. De tillatte konsentrasjonene er langt høyere enn kravene til uteluftkvalitet.

Tabell 11-3: Dimensjonerende konsentrasjoner og luftkvalitetsnivåer for tunneler. (HB021 2010)

<table>
<thead>
<tr>
<th>Forbindelse</th>
<th>Dimensjonerende konsentrasjon</th>
<th>Dimensjonerende luftkvalitet i tunneler som er tillatt for gående og syklende (tunnellengde 0-4 km)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ppm</td>
<td>mg/m³</td>
</tr>
<tr>
<td>NOx</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>NO₂</td>
<td>1,5</td>
<td>0,7</td>
</tr>
<tr>
<td>NO</td>
<td>13,5</td>
<td>10</td>
</tr>
<tr>
<td>CO</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>Sikt/svevestøv</td>
<td>-</td>
<td>1,5</td>
</tr>
</tbody>
</table>

11.5.3 En sammenstilling av de ulike kravene til luftkvalitet

I Tabell 11-4 er de ulike kravene til luftkvalitet stil sammen. Det framgår at
- Kravene fra Arbeidstilsynet (Adm. Norm) er rimelig i samsvar med Håndbok 021
- Luftkvalitetskriteriene ligger typisk mellom 1/5-del til 1/3-del av adm. norm og Håndbok 021.

Tabell 11-4: Sammenstilling av ulike krav til luftkvalitet.

<table>
<thead>
<tr>
<th>Forbindelse</th>
<th>Adm. norm</th>
<th>Luftkvalitets-krav</th>
<th>Nasjonale mål</th>
<th>Luftkvalitets-</th>
<th>Håndbok 021</th>
<th>Dimensjonerende</th>
<th>Luftkvalitet i</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>forurensning</td>
<td></td>
<td>kriterier</td>
<td>Dimensjonerende</td>
<td>konsentrasjon</td>
<td>tunneler som er</td>
</tr>
</tbody>
</table>
Når man sammenligner de ulike kravene til luftkvalitet, ser man at det er store forskjeller i konsentrasjonene. Dette skyldes trolig forventet oppholdstid for personer i luften med den angitte konsentrasjonen. Ved de høyeste konsentrasjonene er også økonomi vektlagt i tillegg til helseeffekter. For luftkvalitetskriteriene, som er de strengeste, er helseeffekter den viktigste faktoren. Kriteriene gjelder da også den luften en person skal puste inn til daglig og restituere seg i etter for eksempel en arbeidstid med høyere konsentrasjoner av ulike forurensningskomponenter i arbeidsplassluften.

Vurderer man på kravene i sammen med helseeffekter forbundet med spesielt dieseleksos og svevestøv samt forventingene om framtidig lavere utslipp fra kjøretøy (se kapittel 1.3), bør det vurderes å stille strengere krav for luftkvalitet i tunneler enn dagens krav i håndbok 021. Både kravet for partikler (PM10) og NO2 bør bli nærmere kravene i Forurensningsforskriften og de nasjonale målene, som er de kravene luften skal tilfredsstille når den kommer ut av tunnelen.
12 APPENDIKS 5: UTSLIPP FRA TUNNELMUNNING – SPREDNINGSKART

Figurene under illustrer et eksempel av et spredningskart, her fra NILU-rapport for Lørentunnelen/Oslo.
