Roadside Traffic Data Collection

Requirement specification

3.2 RTDCE for bicycles

Meisingseth Lars STATENS VEGVESEN

Table of contents

Introduc	tion	3
Definitio	ns	4
Referenc	es and standards	5
1. Ger	eral description	6
1.1	Description of objective/requirements	6
1.2	Goals for the delivery	6
1.3	System for collecting traffic data	7
1.3.	Principles and overview	7
1.3.2	2 Vehicle parameters	9
1.3.3	3 Measuring accuracy for bicycle traffic	9
2. Des	cription of the delivery	10
21	In general	10
2.1	Scope	10
2.2	Objectives and principles for procurement	10
2.2.1	2 What the delivery will include	10
2.2.3	3 Structure	11
3. Tec	hnical requirements	. 11
21	Conoral technical requirements	11
3.1	Installation requirements	11
33	Environmental requirements	12
3.4	Power supply and electricity requirements	13
3.5	Time and positioning	. 13
3.6	Data storage and control of data quality	. 14
37	Interface and communication	15
3.8	Documentation	. 15
4 Per	formance requirements	16
4.1	Road type	16
4.2	Measurements	17
4.3	External sensors	17
5. Opt	10NS	18
5.1	Local presentation	18
5.2	Antennas	19
5.3	Future development road map	19
5.3.	1 Registration of pedestrians	19
6. Add	litional documentations and descriptions	. 20
Appendi	x	. 22
A.1	Principals for lane numbering	22
A.2	Road types for bicycle registration	25

Introduction

This document covers the requirements related to Roadside Traffic Data Collection Equipment (RTDCE) for bicycles.

Separate documents describe the interface used for communication between RTDCE and the back office system, Datainn, (OPC UA).

This document serves the following purposes:

- It is the basis for the response to the Tender documents.
- Development of a test plan and at a later stage, detailed test procedures, for qualifying the equipment on the requirements in this document.

The audience for this document is:

- The bidders for the RTDC equipment
- The Contractor's personnel who is involved in realising the system being: HW/SW engineers involved in development, test engineers and project management.
- The customer's personnel who are involved in the commissioning of the delivered RTDC equipment.

Definitions

The glossary in Table 1 is an alphabetical list with the explanation of terms and phrases used in the specifications.

Table 1. Alphabetical list

API	Application programming interface		
Continuous traffic data collection	Continuous in this context means permanent		
	installations collecting traffic data 24/7		
Data owner	Norwegian Public Roads Administration will be the		
	owner of all data collected in connection with the traffic		
	data system		
DHCP	Dynamic Host Configuration Protocol		
Ethernet	Computer networking technologies for local area		
	networks		
GNSS	A Global Navigation Satellite System (GNSS) is a space-		
	based satellite navigation system that provides location		
	and time information		
GPS	The Global Positioning System (GPS) is a GNSS		
Mobile traffic data collection	Short term traffic data collection with non-permanent		
	installation without fixed power, with or without		
	continuous data transfer.		
NPRA	Norwegian Public Roads Administration		
NTP	Network Time Protocol is a networking protocol for		
	clock synchronization between computer systems over		
	packet-switched, variable-latency data networks.		
OPC UA	Open Productivity & Connectivity, Unified Architecture.		
	An open and contractor independent standard for		
	transfer of process data.		
Operational uptime	The percentage of time the equipment is in a condition		
	to perform its intended function		
Periodic traffic data collection	A planned and determined period of traffic data		
	collection. Installations can be permanent, but may not		
	have fixed power or continuous data transfer.		
RTDCE	Roadside Traffic Data Collection Equipment		
	All equipment installed at the roadside with the main		
	objective of collecting information on vehicles and		
	pedestrians.		

	<i>NOTE 1: The sensors not integrated in the RTDCE itself are not part of the RTDCE, e.g. inductive loops and piezoelectric cables installed in the road pavement.</i>
	NOTE 2: Any traffic sign or road user information
	information signs, is not part of the RTDCE.
SAT-test	Site Acceptance Test
Technical service life	A product's technical service life is its expected lifetime,
	or the acceptable period of use in service. It is the time
	that any manufactured item can be expected to be
	'serviceable' or supported by its manufacturer.
UTC	Coordinated Universal Time, the primary time standard
	by which the world regulates clocks and time
VbV	Vehicle by vehicle, i.e. every vehicle shall be detected
	and handled individually
Vehicle	Motor vehicle or bicycle

References and standards

- [1] 4.1 RTDCE interface OPC UA.
- [2] 5.1 RTDCE Test Strategy.

1. General description

Automated and real-time collection, mining and application of big data from the roads network is key for the NPRA in order to monitor, plan and manage roads and traffic. The network of traffic sensors spread throughout the country collects traffic data in real time – volume, vehicle types, traffic speeds and density on the roads – on a 24/7 basis. The sensor network generates vast volumes of data (ie "big data"), and the ambition of the NPRA is to publish raw and enriched data openly for third party entities, the public in general and real time data management systems in order to rationalise road maintenance, anticipate and manage traffic, uncover safety hazards and improve road safety.

In short, the sensors collect passing motor vehicle and bicycle information, convert the data into traffic event data and submit (via roadside network equipment) the events to the Datainn platform for further processing and storage. All information exchange between the roadside equipment and the Datainn platform uses the OPC UA standard [1]. A distributed architecture in Datainn ensures very high performance and scalability, while enabling close to real-time detection of certain types of abnormal traffic patterns or traffic hazards.

1.1 Description of objective/requirements

Norwegian Public Roads Administration (NPRA) is responsible for collecting traffic data on the national and county road network in Norway. A distinction is made here between bicycle traffic and motorised vehicles. Recording of traffic takes place at both fixed data collection sites with monitoring throughout the year, so-called continuous data collection, and periodic or mobile traffic data collection in fixed or non-fixed sites.

The NPRA invites tenders for delivery of equipment for continuous, periodic and mobile data collection of bicycle traffic according to specified requirements.

1.2 Goals for the delivery

The delivery shall contribute to realising general objectives and strategies with respect to collection of traffic data.

The primary goals for the whole system is that collection of traffic data should take place efficiently, and achieving high quality data both for real-time observation and traffic statistics. The data owner (NPRA) must have full control of the data, and not be dependent on obtaining data via a third party.

The NPRA wishes to enter into a framework agreement with Contractors who can offer reliable, appropriate and innovative roadside traffic data collection equipment for bicycles.

Separation of concerns. The Contractors are responsible for their own RTDCE, while the NPRA is responsible for everything else in the traffic data collection ecosystem. This ensures

a maximum degree of transparency, supporting the aim of acquiring traffic data where quality parameters (such as % of vehicles registered, quality of speed measurements) are as transparent as possible for the NPRA.

The NPRA aims for a data collection system where

- The collected traffic data satisfy the specified data quality requirements
- Observation data is acquired in a uniform manner from systems using OPC UA interface
- The system requires a minimum of administration and maintenance, particularly onsite, and is reliable, robust and flexible

1.3 System for collecting traffic data

1.3.1 Principles and overview

The overall objective is to have a differentiated traffic data collection system where one uses the technology that is most appropriate in relation to the data needed, local conditions and available infrastructure.

The main principle for roadside traffic data collection is that the data must be processed on a VbV basis.

All equipment offered in this tender will be placed into the NPRA Data Acquisition Network, a separate, private and isolated VPN. NPRA routers are deployed roadside, extending this network from the roadside cabinets to our central data centers. Later, the possibility of data transfer through NPRA's Data Acquisition Network may be facilitated by using SIM cards installed on the RTDCEs.

Equipment in the NPRA Data Acquisition Network will not access the public internet. Inbound VPN access can be arranged, allowing troubleshooting or similar tasks.

The RTDCE shall provide a light weight operational historian¹, or a buffer, from which data can be transmitted, and retransmitted if needed, for example if there was a communications network outage during the initial transfer attempt.

The solution will consist of RTDCE providing a local, built-in OPC UA server. See [1] for a more detailed description of the use of OPC UA for collecting traffic data.

The central system Datainn will act as an OPC UA client.

¹ A time-based database for telemetry and process information.

Accumulation of data will take place in the central system. This system is not a part of the tender. A test kit simulating the interface to Datainn will be made available for the Contractors for testing purposes.

Figure 1. System overview for traffic data collection.

1.3.2 Vehicle parameters

The equipment for registration of bicycles shall collect data with parameters as specified in the address space for OPC UA, described in [1].

1.3.3 Measuring accuracy for bicycle traffic

Table 1 shows the requirements for measurement functionality and accuracy for different parameters. Note that the specified requirements for measuring accuracy are to be regarded as indicative requirements. The requirements can be set higher in mini tender competitions. Further clarification will be made in the specification that follows the individual mini tenders.

		Requirements for measuring accu		
Parameter	Definition/ Application	Unit	Accuracy	
Bicycle	Registration of bicycle units		Minimum 90%	
detection				
Timestamp	Timestamp for bicycle	UTC milliseconds		
	registration			
Lane	Lane number for bicycle	Integer	Minimum 90 %	
	registration			
Direction	Direction of bicycle	Vehicle direction	Minimum 90 %	
		parameter		
Optional bicycle par	rameters:			
Quality meta-data	To be specified by Contractor			
Bicycle speed	Bicycle direction is indicated by	km/h		
	sign of number			
Other bicycle	To be specified by Contractor	metric (if	To be specified by	
parameters		applicable)	Contractor	
Pedestrian registrat	ion			
Pedestrian	Registration of pedestrians		To be specified by	
detection			Contractor	
Timestamp	Timestamp for pedestrian	UTC milliseconds		
	registration			
Lane	Lane number for pedestrian	Integer		
	registration			
Direction	Direction of pedestrian			
Optional: Other	Quality meta-data etc. to be		To be specified by	
pedestrian	specified by Contractor		Contractor	
parameters				

Table 1 Measuring accuracy for bicycle traffic

2. Description of the delivery

2.1 In general

The purpose of this tender is to enter into framework agreements for the acquisition of equipment for continuous and periodic traffic data collection regarding bicycle traffic. Equipment regarding motor vehicles are covered in other framework agreements. Although some technologies / equipment may be used for all purposes, it has been found convenient to divide the assignment in the following two parts:

- A Equipment for traffic data collection regarding bicycle traffic, with permanent installation
 - A.1. Continuous traffic data collection fixed power grid
 - A.2. Periodic traffic data collection may require use of battery or alternative power sources.
- **B** Equipment for traffic data collection regarding bicycle traffic, with non-permanent installation
 - B.1. Mobile equipment for traffic data collection

2.2 Scope

2.2.1 Objectives and principles for procurement

This specification is a functional specification for equipment for registration of bicycles. The Contractors must meet the functional requirements within the requested application areas.

The actual equipment procurement will be arranged through mini tender competitions.

2.2.2 What the delivery will include

The specification of requirements describes the area within the red square in figure 2. Local presentation of traffic data collected, for example in the form of a bicycle display, is an option.

Figure 2. Main elements in the specification

The delivery includes the supply of RTDCE, which can be either complete registration units with sensor features integrated or can be connected to external sensors, for example, inductive loops and piezoelectric cables. The sensors are not a part of the tender, unless it is/they are integrated in the RTDCE. The procurement includes interface based on OPC UA, see [1].

Later mini tender competitions can request an extended functionality of the RTDCE to also handle registration of pedestrians. The Contractor should describe any additional hardware or software needed, including external sensors.

2.2.3 Structure

This specification consists of requirements for equipment for continuous, periodic and mobile registration of bicycle traffic.

The specifications are divided into technical and performance requirements, requirements for the communication interface are given in [1].

The test strategy is described in [2].

3. Technical requirements

All of the minimum requirements can be altered in the mini tender competitions, however the NPRA shall give fair warning of which requirements that are to be tightened. See SSA-R appendices.

3.1 General technical requirements

ID Requirements Gradation Part Test

3.1.1	The guarantee period for the RTDCE shall be in	Absolute	А, В	
	accordance to clause 2.1.6 in the SSA-K-condensed.			
3.1.2	The technical service life shall not be less than 10 years.	Absolute	А, В	KPI
3.1.3	The Contractor shall describe procedure and expected	Absolute	А, В	
	delivery time for replacement of defect equipment.			
3.1.4	Operational uptime of the RTDCE shall be minimum 99	Minimum	А, В	KPI
	%, measured as an average of all units per mini tender			
	24/7 per month. See SSA-V appendices for further details.			
3.1.5	Packaging and RTDCE shall be labelled with:	Absolute	А, В	DVT
	 which type(s) of traffic it is used to register, i.e 			
	motor vehicles, bicycles or pedestrians			
	 QR code and human readable text displaying 			
	RTDCE serial number			
	 QR code and human readable text displaying 			
	MAC address			
	The QR code shall be encoded at Level H (High) error			
	correction.			
	The QR code physical dimensions shall be no less than			
	3cm x 3cm.			
	4cm x 4cm is recommended.			
	The tender shall give an example or otherwise describe			
	what the labelling will look like, and where it will be			
	located on packaging and RTDCE.			
	These are our suggestions, made with			
	http://www.racoindustries.com/barcodegenerator/2d/qr-			
	code.aspx (examples are not to scale):			
	Serial number MAC address			
	62536 65536			
	S1227 0011222244EE			
1	001122004400		1	1

3.2 Installation requirements

ID	Requirements	Gradation	Part	Test
3.2.1	Physical dimensions and placing of the RTDCE and the	Absolute	А, В	DVT
	necessary equipment for its intended use may be limited			
	in the mini tender.			
3.2.2	The installation procedure and guidelines for the RTDCE	Absolute	А, В	DVT
	shall provide an easy and user friendly installation with			SAT-T
	ordinary mounting tools.			

3.3 Environmental requirements

ID	Requirements	Gradation	Part	Test
3.3.1	RTDCE exposed to open air shall tolerate normal road	Absolute	А	DVT
	maintenance such as sweeping, snow-clearing, scattering of			FAT
	gravel and salting.			KPI
3.3.2	Electronic units and equipment that are installed in a cabinet	Absolute	А, В	DVT
	shall function properly within the temperature range -40°C to			KPI
	+80°C.			
3.3.3	Electronic units, sensors and equipment that are exposed to	Absolute	А, В	DVT
	the open air must function properly within the temperature			KPI
	range -40° C to $+40^{\circ}$ C.			
3.3.4	Equipment in cabinets must as a minimum meet the	Minimum	А, В	DVT
	requirements for IP31.			KPI
3.3.5	Equipment that is exposed to the roadside environment	Minimum	А, В	DVT
	outside a cabinet must as a minimum meet the requirements			KPI
	for IP64.			
3.3.6	Sensors and equipment that is exposed to open air shall work	Absolute	А, В	DVT
	within the moisture range of 5% to 100%.			KPI

3.4 Power supply and electricity requirements

ID	Requirements	Gradation	Part	Test
3.4.1	All electronic equipment shall be checked and approved in	Absolute	А, В	DVT
	accordance with applicable regulations.			
3.4.2	The contractor must specify the battery (12 V) needed to be	Absolute	А	DVT
	used as a backup for minimum four days of data collection			SAT-T
	and local traffic data storage. The backup battery itself is not			KPI
	a part of the tender.			
3.4.3	The contractor must specify the battery (12 V) needed to	Absolute	А	DVT
	operate a periodic data collection for a minimum of 14 days			SAT-T
	with the following data transfer scenarios:			KPI
	Continuous data transfer			
	Data transfer every hour			
	Data transfer once a day			
	Without data transfer during the registration period			
3.4.4	Mobile equipment (part B) must include battery sufficient for	Minimum	В	DVT
	at least one month of operation with the following data			SAT-T
	transfer scenarios:			KPI
	Continuous data transfer			
	Data transfer every hour			
	Data transfer once a day			
	Without data transfer during the registration period			
	It shall be easy to replace the battery.			
3.4.5	The units shall be equipped with cables to connect the unit to	Absolute	А	DVT
	the Norwegian fixed electrical grid and battery backup. The			
	type of power supply will be specified in mini tenders.			
3.4.6	The RTDCE must have diodes or display showing at least	Absolute	A, B	DVT
	- If the unit is connected to power			SAT-T

- If the unit is detecting vehicles		SAT
- if the unit is connected to a network		

3.5 Time and positioning

ID	Requirements	Gradation	Part	Test
3.5.1	Every vehicle registration must be time-stamped using the	Absolute	А, В	DVT
	UTC millisecond format.			SAT-T
				SAT
3.5.2	The station shall be equipped with a standard GNSS receiver	Absolute	А, В	DVT
	that supports EGNOS. GNSS is used for both timestamp and			SAT-T
	positioning. GNSS shall be used as the primary source for			
	timestamp.			
3.5.3	The device shall be able to synchronize the clock with	Absolute	А	DVT
	external sources using NTP. NTP shall be used as the			SAT-T
	secondary source for timestamp.			
3.5.4	In the case of no available synchronisation via GNSS or NTP,	Absolute	А, В	DVT
	the internal clock must not have an expected drift of more			KPI
	than one minute per month.			
	The Contractor shall specify the expected drift per month of			
	the internal clock.			
3.5.5	The unit shall have user configurable time and date settings.	Absolute	А, В	DVT
				SAT-T
3.5.6	The RTDCE shall have a standard SMA connection to the	Absolute	А, В	DVT
	GNSS antenna.			
3.5.7	Positions from GNSS shall use decimal degrees with at least	Absolute	А, В	DVT
	five decimals for latitude and longitude indicating the			SAT-T
	position of the RTDCE.			SAT

3.6 Data storage and control of data quality

ID	Requirements	Gradation	Part	Test
3.6.1	After a total loss of power the RTDCE unit shall start up	Absolute	А, В	DVT
	automatically without requiring reconfiguration, and			SAT-T
	resume normal operation without manual intervention.			SAT
3.6.2	Traffic events must be stored internally in such a way that	Absolute	А, В	DVT
	in the event of a power loss, the unit shall not lose more			SAT-T
	than one – 1 – minute of traffic data due to in memory			SAT
	storage, other internal configuration choices by the			KPI
	Contractor or other factors within the Contractors control.			
3.6.3	The RTDCE shall be equipped with sufficient memory to	Absolute	А, В	DVT
	store vbv data equivalent to 120 000 events per day for at			KPI
	least three months before any new data overwrites the			
	oldest data. Thus the buffer shall not be overwritten until			
	its capacity is at / near max, to ensure a minimal chance of			
	data loss.			
3.6.4	Should the data storage become full, the oldest data must	Absolute	А, В	DVT
	be overwritten first.			KPI

	The unit shall never fail because the data store is full. The			
	Contractor shall describe how a full data storage will be			
	handled.			
3.6.5	Each stored data object shall have a unique numeric	Absolute	А, В	DVT
	sequential identity as described in [1].			SAT-T
				SAT
3.6.6	In case of communication failure between the station and	Absolute	А, В	DVT
	the central data acquisition system (no matter the cause –			SAT-T
	network, OPC UA connection etc.), the unit shall continue			SAT
	to collect and store data locally.			
3.6.7	If the unit calculates quality meta-data connected to its	Wanted	А, В	DVT
	measured attributes on the bicycle registrations, then this	functionality		SAT-T
	data must be transmitted along with the data in the record			
	or measurement.			

3.7 Interface and communication

ID	Requirements	Gradation	Part	Test
3.7.1	Communication between Datainn and RTDCE shall comply	Absolute	А, В	DVT
	with description in [1].			SAT-T
	The OPC UA interface can be adjusted or extended during			
	the contract period.			
3.7.2	Contractor shall specify a development plan for OPC UA	Absolute	А, В	DVT
	compliance.			
3.7.3	Firmware update shall be opaque /atomic and initiated	Absolute	А, В	DVT
	remotely for a fleet of RTDCEs over OPC UA, using			SAT-T
	methods described in [1].			KPI
3.7.4	RTDCE shall have an Ethernet port for connection with the	Absolute	А, В	DVT
	central system.			SAT-T
3.7.5	The interface for RTDCE configurations shall be OPC UA.	Absolute	А, В	DVT
				SAT-T
3.7.6	The interface/cable(s) between the RTDCE and any external	Absolute	А, В	DVT
	sensors must be included in the delivery.			SAT-T
3.7.7	It must be possible to do onsite validation of lane and	Absolute	А, В	DVT
	direction of passing vehicles, via local connection to the			SAT-T
	RTDCE.			SAT

3.8 Documentation

ID	Requirements	Gradation	Part	Test
3.8.1	All documentation shall be given in English or a	Absolute	А, В	DVT
	Scandinavian language.			SAT-T
3.8.2	The user manual. Contractor shall provide guidance in	Absolute	А, В	SAT-T
	installation, use and maintenance of the equipment.			
3.8.3	The contractor shall provide technical support for the	Absolute	А, В	DVT
	delivered RTDCE. Information on support line (phone,			SAT-T
	email and hours of support) must be supplied in the tender.			

3.8.4	The system manual shall include a detailed technical	Absolute	А, В	DVT
	description of all equipment intended for use by system			SAT-T
	administrators in the NPRA.			
3.8.5	The contractors must provide a change log with each	Absolute	A, B	KPI
	firmware update as described in [1].			
3.8.6	If the Contractor's wishes to extend the OPC UA namespace	Absolute	А, В	DVT
	with additional node, a detailed description must be			SAT-T
	provided. This must also be updated in the event that a new			
	firmware release alters the namespace or adds new			
	nodes/methods/etc.			
3.8.7	External sensors: The Contractor shall give information	Absolute	А, В	DVT
	about the type(s) of external sensors to be used with the			
	RTDCE.			
	The installation, maintenance and user manual for the			
	external sensors shall include at least:			
	• Type of cable			
	 Requirements and limitations regarding the sensors 			
	 Expected lifetime of the sensors 			
	 Installation procedure, including geometry and 			
	depth of sensors			
	 Approximate time for installation, and if the road 			
	have to closed during installation			
	 Describe any need of special equipment, limitations 			
	in weather conditions and other important factors			
	for a successful installation.			
	Maximum length of feeder cable			
	 Maintenance needed for a long lifetime of sensors 			

4. Performance requirements

4.1 Road type

ID	Requirements	Gradation	Part	Test
4.1.1	The RTDCE shall be capable of detecting bicycles on	Absolute	А, В	FAT
	walkways and bicycle tracks. Examples of different road types			SAT-T
	are shown in Appendix 0.			SAT
				KPI
4.1.2	If the RTDCE is able to detect bicycles on other road types	Wanted	А, В	DVT
	than walkways and bicycle tracks the Contractor must	funktiona		FAT
	describe where the equipment can be used and what quality	lity		
	(deviation from real numbers of bicycles) is expected.			
4.1.3	Lane numbering shall follow the description in Appendix A.1.	Absolute	А, В	DVT
				SAT-T
				SAT
4.1.4	Contractor shall specify the number of lanes one RTDCE can	Absolute	А, В	DVT
	register traffic on.			SAT-T
4.1.5	The Contractor shall describe minimum and maximum width	Absolute	А, В	DVT
	of one lane.			SAT-T

4.2 Measurements

ID	Requirements	Gradation	Part	Test
4.2.1	The monitoring equipment shall record cyclists who pass	Absolute	А, В	DVT
	the sensors, as described in Table 1 and the OPC UA			FAT
	interface [1].			SAT-T
				SAT
				KPI
4.2.2	The RTDCE shall distinguish between the different lanes	Absolute	А, В	DVT
	bicycles are using.			FAT
				SAT-T
				SAT
				KPI
4.2.3	The RTDCE shall distinguish between the directions of the	Absolute	А, В	DVT
	bicycles passing the RTDCE.			FAT
				SAT-T
				SAT
				KPI
4.2.4	Registrations must be timestamped as individual events.	Absolute	А, В	DVT
				FAT
				SAT-T
				SAI
105			A D	KP1
4.2.5	ine RIDCE shall capture data with minimum accuracy as	Minimum	А, D	
	Specified in Table 1. Other requirements can be given in mini tender			ГАІ Слтт
	competitions			SAT-I
	competitions.			KPI
426	If other entities (e.g. motor vehicles suitcases prams etc.)	Absolute	AB	DVT
	are recorded, they shall be treated in the monitoring	10001440	1., 0	FAT
	system in such a way that they are not confused with the			SAT-T
	bicycle registrations.			SAT
				KPI
4.2.7	If optional and other parameters are registered, the	Wanted	A, B	DVT
	Contractor shall give information about the accuracy	functionality	,	FAT
				SAT-T
				SAT
				KPI

4.3 External sensors

ID	Requirements	Gradation	Part	Test
4.3.1	External sensors shall tolerate normal road maintenance	Absolute	А	DVT
	such as sweeping, snow-clearing, scattering of gravel and			FAT
	salting.			KPI
4.3.2	The Contractor shall describe the different type of sensors	Absolute	А, В	DVT
	available to use with the RTDCE			

4.3.3	The Contractor shall describe expected lifetime of sensors	Absolute	А, В	DVT
				KPI
4.3.4	The Contractor shall describe minimum and maximum	Absolute	А, В	DVT
	width covered with one sensor.			SAT-T
	If several sensors can be combined in one lane, this solution			
	should also be described.			
4.3.5	If one sensor covers more than one lane, describe how the	Absolute	А, В	DVT
	registrations will be split in respective lanes.			SAT-T

5. Options

5.1 Local presentation

This option includes a bicycle display or other local presentation of traffic data. The term "bicycle display" is used in the requirements, but each individual requirement also applies to other forms of local presentation.

ID	Requirements	Gradation	Part	Test
5.1.1	Any equipment for local presentation shall meet the	Absolute	А	DVT
	environmental requirements as stated in Chapter 3.3.			FAT
				KPI
5.1.2	The bicycle display shall present the total number of	Absolute	А	DVT
	cyclists for the current 24-hour period.			FAT
				SAT
				KPI
5.1.3	The bicycle display shall present the total number of	Absolute	А	KPI
	cyclists for the current calendar year.			
5.1.4	The data presented shall be updated in real time.	Absolute	А	DVT
				FAT
				SAT
				KPI
5.1.5	Cyclists in one or both directions shall be able to see their	Wanted	А	
	own passing on the bicycle display. Such installations	functionality		
	shall be described in a manual.			
5.1.6	The presentation on the bicycle display shall be clearly	Absolute	А	DVT
	visible at a distance of at least 5 metres, irrespective of			FAT
	weather and lighting conditions, to a person with normal			
F 1 F	eyesight.			
5.1.7	Communication to bicycle display shall use open and	Absolute	А	DVT
= 1 0	documented communication protocols.			FAI
5.1.8	The RTDCE shall be an integrated part of the bicycle	Absolute	А	DVT
	display if it has to be placed in a cabinet. No additional			FAT
= 1 0	cabinets are installed at the site.			DUT
5.1.9	The Contractor shall describe physical dimensions and	Absolute	А	DVT
	design of the displays offered.			

	Requirements on size and design can be introduced in mini tenders, to accommodate for different local			
5.1.10	All necessary documentation shall be provided, for installation, use and maintenance of the bicycle display.	Absolute	A	

5.2 Antennas

ID	Requirements	Gradation	Part	Test
5.2.1	Units delivered with combined GPS/3G antennas. The GPS/3G antenna must comply with the following specification:	Absolute	А	DVT
	 Multi-band GPS + GSM/UMTS The GPS antenna shall work with the GPS and GLONASS frequencies; 1575.42 MHz and 1602 MHz The GSM/UMTS antenna shall work with the regular GSM/2G/3G/4G bands; 704-960 MHz and 1710-2620 MHz IPX7 protection Centre bolt mount: Threaded bolt length at minimum 40 mm and maximum 50 mm Threaded bolt mount with diameter at least the diameter of the RTDCE connector Puck shaped antenna Two cables, both at least 2 metres One cable terminated for GPS of the type SMA (SubMiniature version A, coaxial RF connector), suitable for delivered RTDCE GPS connector One cable terminated for GSM/UMTS (TNC male, suitable for Cisco 819 router) 			

5.3 Future development road map

Since RTDCE is an area of development NPRA wants to indicate functions which it might want to add in a future mini tender competition. These requirements are not evaluated for the framework agreement. If they are included in a mini tender the functions will be evaluated there. Appart from registration of pedestrian the NPRA can evaluate other functions that the contractor includes in the RTDCE units that add value to the NPRAs data collection.

New hardware or software must be tested and approved by the NPRA before the equipment can be offered in mini tenders.

5.3.1 Registration of pedestrians

The Contractor has the option of including equipment for registration of pedestrians, if this is available as an extension of the RTDCE. Any additional software or hardware needed to register pedestrians shall be described.

ID	Requirements	Gradation	Part	Test
5.3.2	If the RTDCE can record pedestrians who pass the sensors,	Absolute	А, В	DVT
	the namespace and communication shall be as described in			SAT-T
	the OPC UA interface [1].			SAT
				KPI
5.3.3	Registrations must be clocked as individual passings.	Absolute	А, В	DVT
				SAT-T
				SAT
				KPI
5.3.4	The monitoring equipment shall record pedestrians with	Absolute	А, В	DVT
	high accuracy. The Contractor specifies which accuracy their			FAT
	equipment can meet, with third party tests if available.			SAT-T
				SAT
				KPI
5.3.5	The monitoring system shall distinguish between the	Absolute	А, В	DVT
	directions of pedestrians passing the RTDCE.			FAT
				SAT-T
				SAT
				KPI
5.3.6	The RTDCE shall distinguish between the different lanes	Absolute	А, В	DVT
	pedestrians are using.			FAT
				SAT-T
				SAT
				KPI
5.3.7	The Contractor shall inform on which road types it is	Absolute	А, В	DVT
	possible to register pedestrians, and any limitations and			
	requirements to the location of the equipment.			
5.3.8	The equipment shall use the same type of power source as	Absolute	А, В	DVT
	the bicycle equipment.			
5.3.9	Contractor shall provide necessary documentation	Absolute	А, В	DVT
	including installation procedure, guidance in the use and			
	maintenance			

6. Additional documentations and descriptions

6.1.1.1.1.1 Power supply

Descr. A.1 The registration equipment must be attachable to the fixed electrical grid, be attached to a battery, or function with an alternative power supply (e.g. solar panel). The tender must specify the options for attachment to power supplies. The desired type of power supply will be specified in the mini tender competitions.

6.1.1.1.1.2 Data storage and control of data quality

- Descr. A.4 The Contractor must describe the quality (deviation between automatic collected traffic data and real numbers of bicycles), with references to documented test results.
- 6.1.1.1.1.3 Road type
- Descr. A.9 The Contractor shall include a description of lane setup. Is it possible to collect data from several lanes, what are the maximum numbers of lanes that can be handled and what is the maximum length of the signal supply cable?

Description of setup to adapt to the principles for lane numbering. State the number of lanes that can be covered with one unit, and specify if the equipment can be put together in modules.

6.1.1.1.1.4 Guidelines

Descr. A.10 An installation procedure and guidelines for the RTDCE

Equipment needed for installation shall be described in the offer. By equipment is meant signal cable, fastening device (if the logger cannot be placed in a roadside cabinet) etc. if needed.

- Descr. A.11 A user manual with procedures for verifying configuration and parameter setting for the RTDCE.
- Descr. A.12 To ensure that the data coming from the sensors are homogeneous and of good quality, the Contractor shall describe the necessary maintenance procedures for the RTDCE.
- Descr. A.13 A system manual that includes sufficient technical description of all equipment intended for use by system administrators in the NPRA.
- Descr. A.14 Manuals for sensors and other equipment. They shall include information / manuals with a description of sensors and other equipment from any subcontractors.
- Descr. A.15 Contractor shall briefly describe the support being made available for NPRA with regards to skills and availability (local and nationwide). This shall be included in a separate service agreement, which normally is entered during the warranty period.

Appendix

A.1 Principals for lane numbering

In most cases, individual lanes are monitored. Lane codes are used to identify the different lanes, see Figure 3 and Figure 4. These codes specify the position of the lanes across the road. The lanes are numbered from the middle of the road and out to each side. Odd numbers are used for lanes in the metering direction and even numbers for lanes running counter to the metering direction.

Metering direction

Figure 3. Road type 1: A two lane road.

Figure 4. Road type 2: A four lane road.

Special cases

A ramp is handled as a separate road, with independent metering. Turn lanes inherit the metering from the corresponding main road.

A one lane road, were the driving direction is the same as the metering direction, is numbered 1. If the driving direction is counter to the metering direction, it is numbered 2. See also Figure 5.

Narrow roads with one lane and traffic in both directions, as shown in Figure 6, is numbered 1 and 2. Lanes shorter than five meters is not registered as separate lanes, but is included in the main lane.

A lane assigned for special use will have a code behind the number. Bus lanes will have a K (kollektivfelt), and bicycle lanes will have an S (sykkelfelt).

Bicycle traffic on bicycle tracks and sidewalks will be bidirectional.

► N
Metering direction
Metering direction

Figure 5 Lane numbers on one lane road

Figure 6 Lane numbers on narrow two lane road

Figure 7 Lane numbers on road with bus lanes in both directions

Figure 8 Lane numbers on road with bicycle lane in both directions

A.2 Road types for bicycle registration

The following images show examples of typical bicycle areas.

Figure 9 Walkways

Figure 10 Bicycle tracks with sidewalk

RTDC Requirement specification

Figure 11 Bicycle lanes

Figure 12 Mixed traffic