

The focus of the feasibility study is to achieve a aerodynamic stable bridge

The structural design of steel and concrete is to obtain eigenmodes and frequencies

Quick recap on aerodynamic stability problems

Static divergence

Governed by torsional frequency and the slope of Cm

$$V_{kr} = 2\pi b n_{\theta} \sqrt{\frac{2m_{\theta}}{\rho b^4 C_m'}}$$

Galloping

Governed by the slope of Cl Not a problem on bridge girders

$$C_L' < -\overline{C}_D \cdot D / B$$

Dynamic stability limit in torsion

A2* has to be positive

A2* is always negative on flat plates

Flutter

Coupling of vertical and torsional modes Governed by eigenmodes and aerodynamic derivatives.

$$\hat{\mathbf{E}}_{\eta}\left(\omega, V\right) = \left\{\mathbf{I} - \mathbf{\kappa}_{ae} - \left(\omega \cdot diag\left[\frac{1}{\omega_{i}}\right]\right)^{2} + 2i\omega \cdot diag\left[\frac{1}{\omega_{i}}\right] \cdot \left(\mathbf{\zeta} - \mathbf{\zeta}_{ae}\right)\right\}$$

$$\left| \det \left(\hat{\mathbf{E}}_{\eta} \left(\omega, V \right) \right) \right| = 0$$

Design basis

Load factors and traffic loads

- Eurocode traffic loads are limited to 200 m, 500 m in National Appendix
- 9 kN/m per traffic lane, 2 kN/m per walkway, adding up to a total of 22 kN/m is used in the design of main cables and towers
- Load factors 1.2 for dead loads and 1.35 for traffic loads has been used in design of main cables
- Box girders and hangers are designed according to Eurocode traffic loads and load factors

Wind speed

- Mean wind speed is estimated at of 36 m/s at 60 m above sea level, after 1,5 years of wind measurements on site
- Critical wind speed is defined as:

$$v_{crit} = 1.6 \cdot v_m(z = 60 \text{ m}, T = 600 \text{ s}, T = 500 \text{ years}) = 64.5 \text{ m/s}$$

Outline of the bridge

- Twin box-girder
- 30 m between hangers
- Cross-beam at each hanger
- ø100 mm hangers as full-locked coil ropes
- 265 m high concrete towers
- ø0.75 m suspension cables
 - 0.375 m² each
 - 1860 MPa tensile strength
 - Rock anchor at both ends

Eigen-frequencies

Total mass 19 920 kg/m Mass moment of inertia 2 820 000 kgm²/m

Mode	Frequency [Hz]	Period [T]
HS1	0.038	25.98
HA1	0.072	13.81
VA1	0.086	11.66
VS1	0.103	9.66
HS2	0.111	8.98
VS2	0.139	7.18
TA1	0.158	6.34
VA2	0.157	6.37
TS1	0.175	5.73

Wind tunnel tests

- Extensive wind tunnel testing is carried out by Svend Ole Hansen ApS
- TS1/VS1, TS1/VS2 and TA1/VA2 modes have been tested for flutter
- Various gap between boxes have been tested
- Vortex induces vibrations has proven to be an issue that is still being worked on

 The tests are done in a generic way in order to be used for more crossings than just Halsafjorden

Flutter velocity

- The combination VS2/TS1 does not couple, due to the low coupling coefficient
- VS1/TS1 and VA1/TA1 goes to flutter at approximately the same flutter velocity

Effect of gap on flutter velocity

Vortex induced vibrations

- Several configurations to eliminate vortex induced vibrations have been tested
- Vortex mitigation devices reduce the flutter velocity

Config.	Vortex mitigation devices	Wind shield distance	No. wind shield panels	Normalized max. Displacement r/h
V1	None.	None.	None.	0.058
V6	Opposite guide vanes.	680 mm.	3	0.004
V8	Opposite guide vanes on both angles below the bridge decks.	680 mm.	3	0.002
V9	Opposite guide vanes on both angles below the bridge decks.	680 mm.	2	0.006
V10	Opposite guide vanes on both angles below the bridge decks.	680 mm.	1	0.041

Future work

- The next phase is a preliminary study
- On-site geological surveys
- R&D to get a better understanding of aerodynamic stability problems
- Preliminary design of the main components to obtain a cost estimate