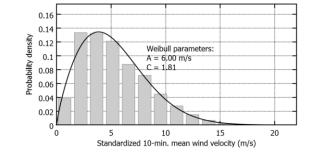


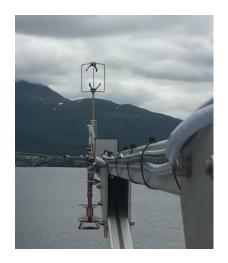
Coastal Highway E39 Teknologidagene 2018 – Trondheim

New generation of long-span suspension bridges


Kristoffer Hoffmann

Svend Ole Hansen ApS, Copenhagen, Denmark

Svend Ole Hansen ApS


Our involvement with Coastal Highway Route E39 so far

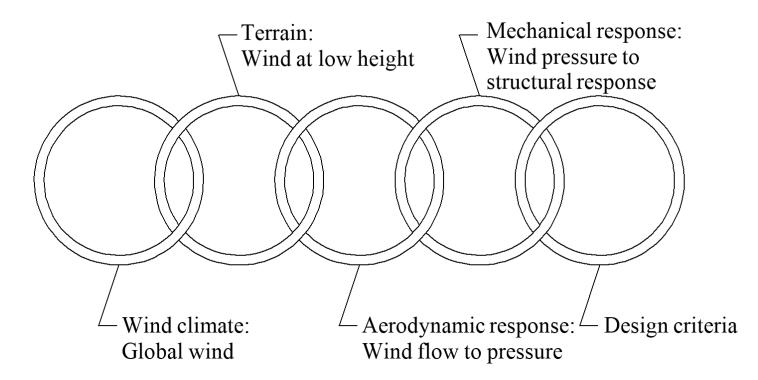
- Wind field descriptions
- Wind tunnel testing
- Wind load calculations
- Full-scale measurements

$$\begin{split} \mathbf{A} &\equiv \frac{1}{2\pi} \begin{pmatrix} \frac{1}{\bar{x}_{C_1} - \bar{x}_{\Gamma_1}} & \cdots & \frac{1}{\bar{x}_{C_1} - \bar{x}_{\Gamma_N}} & V_{\mathbf{w}} \left(K(\tilde{x}_{C_1} - \tilde{x}_{\mathbf{w}}) \right) \\ \vdots & \ddots & \vdots & \vdots \\ \frac{1}{\bar{x}_{C_N} - \bar{x}_{\Gamma_1}} & \cdots & \frac{1}{\bar{x}_{C_N} - \bar{x}_{\Gamma_N}} & V_{\mathbf{w}} \left(K(\tilde{x}_{C_N} - \tilde{x}_{\mathbf{w}}) \right) \\ -iK & \cdots & -iK & 1 \end{pmatrix} \end{pmatrix}, \\ \mathbf{\Gamma} &\equiv \begin{pmatrix} \tilde{\Gamma}_1 \\ \vdots \\ \tilde{\Gamma}_N \\ \tilde{\gamma}_0 \end{pmatrix}, \qquad \mathbf{V} \equiv \begin{pmatrix} \dot{\tilde{y}} - K^{-1}\alpha - \tilde{x}_{C_1}\dot{\alpha} \\ \vdots \\ \dot{\tilde{y}} - K^{-1}\alpha - \tilde{x}_{C_N}\dot{\alpha} \\ 0 \end{pmatrix}. \end{split}$$

1937: Golden Gate Bridge (1280 m)

1998: Great Belt Bridge (1624 m)

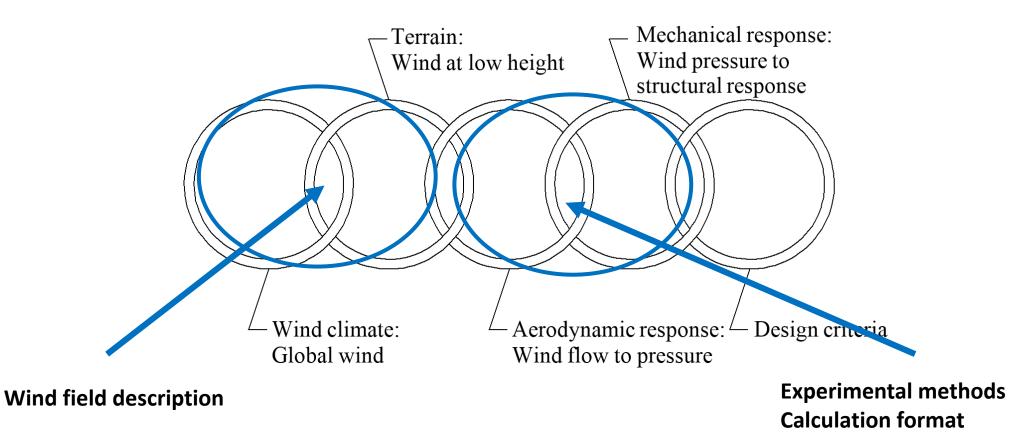
1998: Akashi Kaikyō Bridge (1991 m)


Spans above 2000 m challenge the existing technologies and methods

Q: How to design a long-span suspension bridge with "optimal" <u>aerodynamic</u> behavior?

A: Develop new technology to improve the understanding of wind loads and responses.

Development of new technology

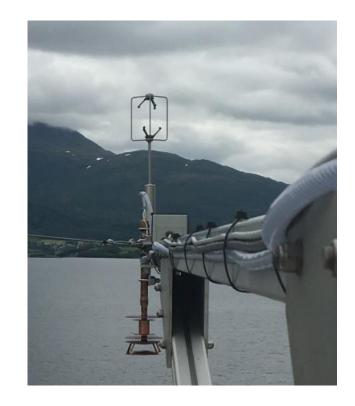

From wind climate to design criteria

Development of new technology

From wind climate to design criteria

Development of new technology - Wind field descriptions

Basic models and parameters in the description of the wind field


• For calculating wind loads

New possibilities to measure and model wind

• Ultrasonic anemometers, LIDAR, SIMRA, ...

Probabilistic wind data format

- Physical understanding \rightarrow Probabilistic models
- Probabilistic quantification of response^{*}

*See paper from COTech 2017

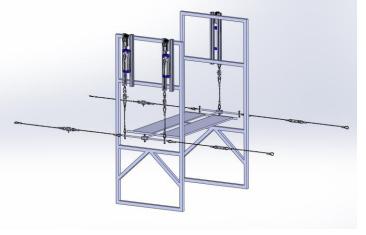
Development of new technology - Wind tunnel testing

Understand the wind loading mechanisms and magnitudes

• Section model tests: Spring-supported, forced-motion rig

Along-span characteristics are important

• Pressure taps: Along-span load correlation


Effect of additional elements

• Railing, windshields, traffic barriers, etc.

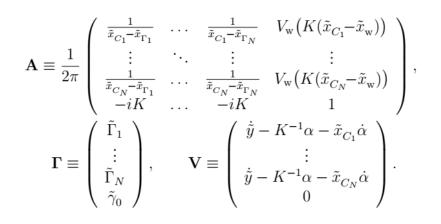
For other E39 bridge concepts

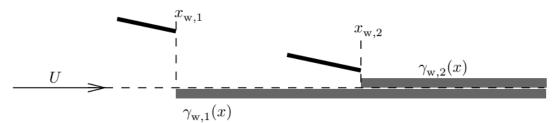
- Submerged floating tube bridge Hydrodynamics, VIV^{*}
- Floating bridge Wave-induced vertical wind components

*See paper from Experimental Fluid Mechanics 2015

Development of new technology – Calculation methodologies

The prediction of flutter

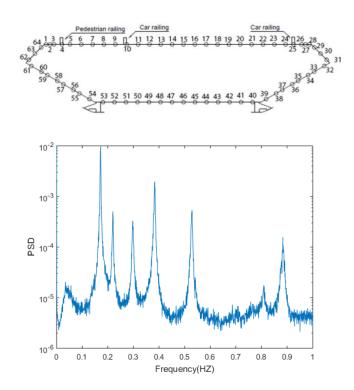

- Basic theory is derived from flat-plate considerations
- Aerodynamic derivatives (Reformulation?)


Buffeting loads

• Aerodynamic admittance^{*}

Multi-segment flat-plate theory**

• Flat-plate representation of split-box girder


*See paper from Bluff Body Aerodynamics and Applications 2016 **Submitted to "Journal of Wind Engineering and Industrial Aerodynamics"

Development of new technology – Full-scale measurements

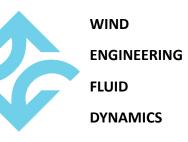
Further understand and verify the generation of wind loads and responses

- Undisturbed wind
- Wind-induced surface pressure
- Structural response

<u>Technology</u> is a key factor for the new generation of long-span suspension bridges

Development in all parts of the wind load chain

- Wind field
- Calculation methods
- Experimental methods


For the design of girder cross section

Halsafjorden crossing concept (Kristian Berntsen, SVV)

Norway leads the field in the technological development for suspension bridges

• Perspective: In 20-40 years - Top 3 of world's longest spans in Norway?

Thank you for your attention

Svend Ole Hansen ApS