

Effect of floating bridge vertical motion on vehicle ride comfort and road grip

GOALS OF INVESTIGATION

Investigate the influence and analyze the effects of floating bridge <u>vertical motion</u> on:

• vehicle ride comfort and

vertical force between wheel and ground.

STEPS OF ANALYSIS

• <u>INPUTS</u>

Road roughness (stationary ground), Bridge vertical motion (moving ground).

VEHICLE MODEL

Bus model (one dimensional 3 Degrees Of Freedom).

<u>OUTPUTS</u>

Vertical driver's acceleration (weighted *RMS* value), Vertical force (Dynamic Load Coefficient – *DLC*).

DISTURBANCES FROM STATIONARY GROUND

<u>Road roughness – very good/good condition</u> (class A/B – ISO 8608 standard)

$$\Phi_{\zeta}(n) = \Phi_{\zeta}(n_0) \cdot \left(\frac{n}{n_0}\right)^{-w}$$
Power
Spectral
Density
$$\zeta(x) = \sum_{i=1}^N A_i \cos(n_i x - \alpha_i)$$
Road
Roughness

CHALMERS UNIVERSITY OF TECHNOLOGY

Road roughness modelling (class A/B – ISO 8608)

DISTURBANCES FROM MOVING GROUND

Two common approaches on bridge-vehicle interaction:

• (1) bridge-vehicle interaction that refers to the mechanism where bridge vibration is due to vehicle movement and vehicle vibration is due to bridge movement (coupling system) and

• (2) bridge-vehicle interaction that refers to the mechanism where vehicle vibration is due to input from bridge vibration.

DISTURBANCES FROM MOVING GROUND

• In this study, vehicle mass is negligible compared to mass of the bridge. This means vehicle motion does not significantly affect bridge vibration (Siringoringo at al, 2012).

 Vertical bridge displacements input to the vehicle obtained from the actual displacements according to the <u>time and</u> <u>location</u> of vehicle's wheels contact with the bridge deck.

Vertical bridge motion (up and dawn, z-direction)

Cross section of the bridge deck

Different 1-year storm conditions

- I year response, wave only, wave direction 100 deg (from east);
- (II) 1 year response, wave only, wave direction 215 deg (325 global, from North West);
- (III) 1 year response, wind only, wind direction 90 (from east);
- (IV) 1 year response, wind only, wind direction 270 deg (from west);
- (V) 1 year response, all loads, wave + wind [() +
- (VI) 1 year response, all loads, wave + wind [(II) + (IV)

Vertical motion along the bridge due to wave load

Vertical motions for different traffic lanes

CHALMERS UNIVERSITY OF TECHNOLOGY

Vertical motions for two different traffic lanes

Vertical motion along the bridge due to wind load

Vertical motion along the bridge due to wind and wave loads

Bridge displacement and road roughness – model input

Bridge displacement as road roughness in ISO 8608 WIND + WAVE

BUS MODEL – one dimensional 3 Degrees Of Freedom

% BUS QUARTER MODEL PARAMETERS; % mass parameters; m1 = 100; % driver+seat [kg]; m2 = 4000; % sprung mass [kg]; m3 = 550; % unsprung mass [kg];

% oscillatory parameters;

kl = 20000; % driver's seat suspension spring stiffness [N/m]; k2 = 320000; % suspension spring stiffness [N/m]; k3 = 1700000; % bus tyre radial stiffness [N/m];

c1 = 1000; % driver's seat shock absorber damping [Ns/m]; c2 = 10000; % suspension shock absorber damping [Ns/m]; c3 = 150; % wheel damping [Ns/m];

Bus data from Ref. (Agostinacchio et al.)

Differential equations of motion:

$$\begin{split} m_1 \ddot{z}_1 + c_1 \dot{z}_1 + k_1 z_1 - c_1 \dot{z}_2 - k_1 z_2 &= \mathbf{0} \\ m_2 \ddot{z}_2 + (c_1 + c_2) \dot{z}_2 + (k_1 + k_2) z_2 - c_1 \dot{z}_1 - k_1 z_1 - c_2 \dot{z}_3 - k_2 z_3 &= \mathbf{0} \\ m_3 \ddot{z}_3 + (c_2 + c_3) \dot{z}_3 + (k_2 + k_3) z_3 - c_2 \dot{z}_2 - k_2 z_2 &= c_3 \dot{\zeta} + k_3 \zeta \end{split}$$

Concentrated mass	Undamped natural frequencies (Hz)	Damped natural frequencies (Hz)
Seat+driver - m1	2.2916	2.1403
Sprung mass - m2	1.2864	1.2790
Unsprung mass - m3	9.6174	9.4955

MATLAB/SIMULINK

VERTICAL WEIGHTED ACCELERATION – ISO 2631 (1997)

CHALMERS

Vertical driver's acceleration

Vertical force – Dynamic Load Coefficient

DLC represents ratio of standard deviation of total axle load (or *RMS* value of dynamic axle load) and static axle load.

$$DLC = \frac{\sigma_Z}{Z_{st}} = \frac{Z_{dyn,RMS}}{Z_{st}}$$

Lower value of *DLC* points out better contact between wheel and road.

CHALMERS UNIVERSITY OF TECHNOLOGY

Vertical force – Dynamic Load Coefficient

COMPARASION OF BUS MODEL RESPONSES

• Example of vertical raw acceleration of the driver

CHALMERS

Weighted vertical acceleration of the driver

For bus speed above 83 km/h, driving is *'little uncomfortable'* for stationary ground.

For bus speed above 76 km/h, driving is *<u>'little uncomfortable'</u>* for moving ground - bridge. Speed decreases by 8.43 %.

COMPARASION OF BUS MODEL RESPONSES

Example of vertical force

Dynamic Load Coefficient

Higher values of *DLC* for the case of moving ground points out higher variation in vertical forces (lower road grip).

FUTURE INVESTIGATION

Building complex model that can capture signals of lateral bridge motion and winds.

Investigate the influence of those loads on lateral/vertical vehicle behavior.

