Reliability Based Design: Optimization of Suspension Bridges with Emphasis on Aerodynamic Stability

Outline

- 1. Motivation
- 2. Reliability Based Design Optimization
- 3. Reliability analysis of flutter
- 4. Application example
- 5. Summary

Structural Optimization

- Widely Used Technique (e.g., aerospace, automobile, defense)
- But Not So Common in Civil Engineering
- Many Uncertainties
- Reliability Based Design Optimization Considers Uncertainty Parameters Explicitly

Benefits & Payoffs

Robust Optimum Design + Reduce Carbon Emission

What Is Optimization?

Design variable $\rightarrow \mathbf{x}=(x_1, x_2, \dots, x_n)$ Objective function \rightarrow minimize $f(\mathbf{x})$ such that Side limits \longrightarrow $lb_i \leq x_i \leq ub_i$ i=1,2,...,nand $\begin{array}{c} g_1(\mathbf{x}) \leq b_1 \\ \hline \\ G_2(\mathbf{x}) \leq b_2 \end{array}$ $q_m(\mathbf{x}) \leq b_m$

General Optimization Flow Chart

Uncertainty in Parameters

Two Methods

Sampling Methods

- Monte Carlo Sampling
- Latin Hypercube Sampling
- Importance Sampling

Moment Methods

• 1st Order Reliability Method

• 2nd Order Reliability Method

First Order Reliability Method (FORM)

Adding Reliability

Reliability Analysis of flutter

What is Flutter?

- Aerodynamic instability of flexible structures
- Fluid structure interaction
- Coupling of modes
- Zero effective damping

Scanlan's Formulation

$$\mathbf{f}_{a} = \begin{cases} D_{a} \\ L_{a} \\ M_{a} \end{cases} = \frac{1}{2} \rho V K B \cdot \begin{pmatrix} P_{1}^{*} & P_{5}^{*} & B P_{2}^{*} \\ H_{5}^{*} & H_{1}^{*} & B H_{2}^{*} \\ B A_{5}^{*} & B A_{1}^{*} & B^{2} A_{2}^{*} \end{pmatrix} \begin{pmatrix} \dot{v} \\ \dot{w} \\ \dot{\phi} \end{pmatrix} + \frac{1}{2} \rho V^{2} K^{2} \cdot \begin{pmatrix} P_{4}^{*} & P_{6}^{*} & B P_{3}^{*} \\ H_{6}^{*} & H_{4}^{*} & B H_{3}^{*} \\ B A_{6}^{*} & B A_{4}^{*} & B^{2} A_{3}^{*} \end{pmatrix} \begin{pmatrix} v \\ w \\ \phi \end{pmatrix}$$

 $\mathbf{M}\ddot{\mathbf{u}} + \mathbf{C}\dot{\mathbf{u}} + \mathbf{K}\mathbf{u} = \mathbf{f}_a = \mathbf{C}_a\dot{\mathbf{u}} + \mathbf{K}_a\mathbf{u} \implies (\mathbf{A} - \mu\mathbf{I})\mathbf{w}_{\mu}e^{\mu t} = \mathbf{0}$

 $\mu_{j} = \alpha_{j} \pm i \beta_{j} \begin{cases} \omega_{j} = \beta_{j} & \text{frequency} \\ \zeta_{j} = \frac{-\alpha_{j}}{\sqrt{\alpha_{j}^{2} + \beta_{j}^{2}}} & \text{structural damping} & \alpha_{j} = 0 \rightarrow \text{flutter instability} \end{cases}$

Methods for Flutter Analysis

Full Bridge Model Test

Hybrid Method

*Akashi bridge full model, PWRI

*Messina bridge sectional model, U. of Coruna

Fully Computational Method

1. Definition of the Deck Baseline Geometry and Design Range

1. Definition of the Deck Baseline Geometry and Design Range

ΔH (%)

2. Sampling Plan of Computational Fluid Dynamics (CFD) Models

3. CFD Simulations by OpenFoam (kω-SST turbulence model)

4. Wind Tunnel Test Validations

5. Kriging surrogate model construction

6. Quasi-steady formulation to define flutter derivatives

Flowchart: Flutter Analysis

RBDO Formulation: Shape & Size

Flowchart: RBDO

Application Example: Great Belt East Bridge

Scanlan's G1 Section

Flutter Analysis: Initial Design

Mode Shapes and Frequencies

Туре	Frequency (Hz)	
VS	0.098	
VS	0.131	
LS	0.186	
LS	0.195	
LA	0.213	
LS	0.213	
VS	0.216	
VS	0.249	
LA	0.275	
VS	0.282	
TS/LS	0.285	
VS	0.285	
VA	0.286	
TS/LS	0.290	
	Type VS VS LS LS LA VS VA TS/LS	

31.76m 27.00m

V: vert. L: lat. T: tors. S: symm. A: asymm.

Reliability Analysis of GB Bridge

Limit State Function: $G = V_f(\mathbf{x}) - x_w$ Probability of Failure: $P_f = P[G(\mathbf{d}, \mathbf{x}) \le 0]$ Random variables of force coefficients

Random variables:

- Case A: Extreme Wind Velocity
- Case B: Force Coefficients, Derivatives, Extreme Wind Velocity

Case	random var.	CV	β	P_{f}	$V_f(MPP)$	<i>V</i> *(MPP)
A	X _w	0.07	12.01	1.57E-33	78.20	13.22
В	x_w and x_i	0.2	7.58	1.73E-14	62.13	12.33

RBDO Formulation

6 Design Variables

7 Random Variables

RBDO Results

β^{*T*}=6.0

t1: top platet2: bottom platet3: upper sidet4: lower side

RBDO Results

Objective Function

RBDO Results

Objective Function

Summary

- RBDO Provides Accurate & Competitive Optimum Design for Considering Uncertainty Explicitly.
- 2. Fully Numerical Approach of Flutter Velocity Computation Permits the Shape Optimization of Bridge Decks.
- 3. More Probabilistic Constraints in the Future Study (aerodynamic instabilities, turbulence effects, traffic loads, temperature loads...)

Thank you!

Thank you for your attention. I hope you enjoyed the presentation

